Displaying all 4 publications

Abstract:
Sort:
  1. Misnan R, Murad S, Jones M, Taylor G, Rahman D, Arip M, et al.
    Asian Pac J Allergy Immunol, 2008 Dec;26(4):191-8.
    PMID: 19317337
    The purpose of this study was to characterize major allergens of Indian scad (Decapterus russelli) which is among the most commonly consumed fish in Malaysia. Raw and cooked extracts of the fish were prepared. Protein profiles and IgE binding patterns were produced by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting using sera from subjects with fish allergy. The major allergens of the fish were then identified by two-dimensional electrophoresis (2-DE), followed by mass spectrometry of the peptide digests. The SDS-PAGE of the raw extract revealed 27 protein fractions over a wide molecular weight range, while the cooked extract demonstrated only six protein fractions. The 1-DE immunoblotting detected 14 IgE-binding proteins, with a molecular weight range from 90 to < 6.5 kDa. Three protein fractions with molecular weights of approximately 51, 46 and 12 kDa were identified as the major allergens of this fish. The approximately 12 kDa band was a heat-resistant protein while the approximately 51 and 46 kDa proteins were sensitive to heat. The 2-DE gel profile of the raw extract demonstrated > 100 distinct protein spots and immunoblotting detected at least 10 different major IgE reactive spots with molecular masses as expected and isoelectric point (pI) values ranging from 4.0 to 7.0. A comparison of the major allergenic spot sequences of the 12 kDa proteins with known protein sequences in databases revealed extensive similarity with fish parvalbumin. In conclusion, this study demonstrated that a parvalbumin which is similar to Gad c 1 is the major allergen of Indian scad. Interestingly, we also detected heat-sensitive proteins as major allergenic components in our fish allergy patients.
  2. Vockerodt M, Vrzalikova K, Ibrahim M, Nagy E, Margielewska S, Hollows R, et al.
    J Pathol, 2019 06;248(2):142-154.
    PMID: 30666658 DOI: 10.1002/path.5237
    The Epstein-Barr virus (EBV) is found almost exclusively in the activated B-cell (ABC) subtype of diffuse large B-cell lymphoma (DLBCL), yet its contribution to this tumour remains poorly understood. We have focused on the EBV-encoded latent membrane protein-1 (LMP1), a constitutively activated CD40 homologue expressed in almost all EBV-positive DLBCLs and which can disrupt germinal centre (GC) formation and drive lymphomagenesis in mice. Comparison of the transcriptional changes that follow LMP1 expression with those that follow transient CD40 signalling in human GC B cells enabled us to define pathogenic targets of LMP1 aberrantly expressed in ABC-DLBCL. These included the down-regulation of S1PR2, a sphingosine-1-phosphate (S1P) receptor that is transcriptionally down-regulated in ABC-DLBCL, and when genetically ablated leads to DLBCL in mice. Consistent with this, we found that LMP1-expressing primary ABC-DLBCLs were significantly more likely to lack S1PR2 expression than were LMP1-negative tumours. Furthermore, we showed that the down-regulation of S1PR2 by LMP1 drives a signalling loop leading to constitutive activation of the phosphatidylinositol-3-kinase (PI3-K) pathway. Finally, core LMP1-PI3-K targets were enriched for lymphoma-related transcription factors and genes associated with shorter overall survival in patients with ABC-DLBCL. Our data identify a novel function for LMP1 in aggressive DLBCL. Copyright © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
  3. Hayrapetyan A, Tumasyan A, Adam W, Andrejkovic JW, Bergauer T, Chatterjee S, et al.
    Phys Rev Lett, 2024 Jun 28;132(26):261902.
    PMID: 38996325 DOI: 10.1103/PhysRevLett.132.261902
    A combination of fifteen top quark mass measurements performed by the ATLAS and CMS experiments at the LHC is presented. The datasets used correspond to an integrated luminosity of up to 5 and 20  fb^{-1} of proton-proton collisions at center-of-mass energies of 7 and 8 TeV, respectively. The combination includes measurements in top quark pair events that exploit both the semileptonic and hadronic decays of the top quark, and a measurement using events enriched in single top quark production via the electroweak t channel. The combination accounts for the correlations between measurements and achieves an improvement in the total uncertainty of 31% relative to the most precise input measurement. The result is m_{t}=172.52±0.14(stat)±0.30(syst)  GeV, with a total uncertainty of 0.33 GeV.
  4. Aad G, Abbott B, Abeling K, Abicht NJ, Abidi SH, Aboulhorma A, et al.
    Phys Rev Lett, 2024 Jan 12;132(2):021803.
    PMID: 38277607 DOI: 10.1103/PhysRevLett.132.021803
    The first evidence for the Higgs boson decay to a Z boson and a photon is presented, with a statistical significance of 3.4 standard deviations. The result is derived from a combined analysis of the searches performed by the ATLAS and CMS Collaborations with proton-proton collision datasets collected at the CERN Large Hadron Collider (LHC) from 2015 to 2018. These correspond to integrated luminosities of around 140  fb^{-1} for each experiment, at a center-of-mass energy of 13 TeV. The measured signal yield is 2.2±0.7 times the standard model prediction, and agrees with the theoretical expectation within 1.9 standard deviations.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links