Displaying all 4 publications

Abstract:
Sort:
  1. Sim KS, Teh V
    J Microsc, 2015 Dec;260(3):352-62.
    PMID: 26292081 DOI: 10.1111/jmi.12302
    A new technique based on nearest neighbourhood method is proposed. In this paper, considering the noise as Gaussian additive white noise, new technique single-image-based estimator is proposed. The performance of this new technique such as adaptive slope nearest neighbourhood is compared with three of the existing method which are original nearest neighbourhood (simple method), first-order interpolation method and shape-preserving piecewise cubic hermite autoregressive moving average. In a few cases involving images with different brightness and edges, this adaptive slope nearest neighbourhood is found to deliver an optimum solution for signal-to-noise ratio estimation problems. For different values of noise variance, the adaptive slope nearest neighbourhood has highest accuracy and less percentage estimation error. Being more robust with white noise, the new proposed technique estimator has efficiency that is significantly greater than those of the three methods.
  2. Teh V, Sim KS, Wong EK
    Scanning, 2016 Nov;38(6):842-856.
    PMID: 27302216 DOI: 10.1002/sca.21334
    According to the statistic from World Health Organization (WHO), stroke is one of the major causes of death globally. Computed tomography (CT) scan is one of the main medical diagnosis system used for diagnosis of ischemic stroke. CT scan provides brain images in Digital Imaging and Communication in Medicine (DICOM) format. The presentation of CT brain images is mainly relied on the window setting (window center and window width), which converts an image from DICOM format into normal grayscale format. Nevertheless, the ordinary window parameter could not deliver a proper contrast on CT brain images for ischemic stroke detection. In this paper, a new proposed method namely gamma correction extreme-level eliminating with weighting distribution (GCELEWD) is implemented to improve the contrast on CT brain images. GCELEWD is capable of highlighting the hypodense region for diagnosis of ischemic stroke. The performance of this new proposed technique, GCELEWD, is compared with four of the existing contrast enhancement technique such as brightness preserving bi-histogram equalization (BBHE), dualistic sub-image histogram equalization (DSIHE), extreme-level eliminating histogram equalization (ELEHE), and adaptive gamma correction with weighting distribution (AGCWD). GCELEWD shows better visualization for ischemic stroke detection and higher values with image quality assessment (IQA) module. SCANNING 38:842-856, 2016. © 2016 Wiley Periodicals, Inc.
  3. Sim KS, Teh V, Nia ME
    Scanning, 2016 Mar;38(2):148-63.
    PMID: 26235517 DOI: 10.1002/sca.21250
    Noise on scanning electron microscope (SEM) images is studied. Gaussian noise is the most common type of noise in SEM image. We developed a new noise reduction filter based on the Wiener filter. We compared the performance of this new filter namely adaptive noise Wiener (ANW) filter, with four common existing filters as well as average filter, median filter, Gaussian smoothing filter and the Wiener filter. Based on the experiments results the proposed new filter has better performance on different noise variance comparing to the other existing noise removal filters in the experiments. SCANNING 38:148-163, 2016. © 2015 Wiley Periodicals, Inc.
  4. Sim KS, Teh V, Tey YC, Kho TK
    Scanning, 2016 Nov;38(6):492-501.
    PMID: 26618303 DOI: 10.1002/sca.21285
    This paper introduces new development technique to improve the Scanning Electron Microscope (SEM) image quality and we name it as sub-blocking multiple peak histogram equalization (SUB-B-MPHE) with convolution operator. By using this new proposed technique, it shows that the new modified MPHE performs better than original MPHE. In addition, the sub-blocking method consists of convolution operator which can help to remove the blocking effect for SEM images after applying this new developed technique. Hence, by using the convolution operator, it effectively removes the blocking effect by properly distributing the suitable pixel value for the whole image. Overall, the SUB-B-MPHE with convolution outperforms the rest of methods. SCANNING 38:492-501, 2016. © 2015 Wiley Periodicals, Inc.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links