Displaying all 2 publications

Abstract:
Sort:
  1. Mohan D, Teong ZK, Sajab MS, Kamarudin NHN, Kaco H
    Polymers (Basel), 2021 Jun 08;13(12).
    PMID: 34201366 DOI: 10.3390/polym13121912
    The tendency to use cellulose fibrils for direct ink writing (DIW) of three-dimensional (3D) printing has been growing extensively due to their advantageous mechanical properties. However, retaining cellulose in its fibrillated forms after the printing process has always been a challenge. In this study, cellulose macrofibrils (CMFs) from oil palm empty fruit bunch (OPEFB) fibers were partially dissolved for consistent viscosity needed for DIW 3D printing. The printed CMF structure obtained from optimized printing profiles (volumetric flow rate, Qv = 9.58 mm/s; print speed, v = 20 mm/s), exhibited excellent mechanical properties (tensile strength of 66 MPa, Young's modulus of 2.16 GPa, and elongation of 8.76%). The remarkable structural and morphological effects of the intact cellulose fibrils show a homogeneous distribution with synthesized precipitated calcium carbonate (CaCO3) nanoparticles. The shear-aligned CMF/CaCO3 printed composite exhibited a sustained therapeutic drug release profile that can reduce rapid release that has adverse effects on healthy cells. In comparison with the initial burst release of 5-fluorouracil (5-FU) by CaCO3, the controlled release of 5-fluorouracil can be varied (48 to 75%) with the composition of CMF/CaCO3 allowing efficient release over time.
  2. Mohan D, Teong ZK, Bakir AN, Sajab MS, Kaco H
    Polymers (Basel), 2020 Aug 20;12(9).
    PMID: 32825377 DOI: 10.3390/polym12091876
    The materials for additive manufacturing (AM) technology have grown substantially over the last few years to fulfill industrial needs. Despite that, the use of bio-based composites for improved mechanical properties and biodegradation is still not fully explored. This limits the universal expansion of AM-fabricated products due to the incompatibility of the products made from petroleum-derived resources. The development of naturally-derived polymers for AM materials is promising with the increasing number of studies in recent years owing to their biodegradation and biocompatibility. Cellulose is the most abundant biopolymer that possesses many favorable properties to be incorporated into AM materials, which have been continuously focused on in recent years. This critical review discusses the development of AM technologies and materials, cellulose-based polymers, cellulose-based three-dimensional (3D) printing filaments, liquid deposition modeling of cellulose, and four-dimensional (4D) printing of cellulose-based materials. Cellulose-based AM material applications and the limitations with future developments are also reviewed.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links