Vibrio parahaemolyticus is a Gram-negative halophilic bacterium which is found largely in estuarine and coastal waters. The bacteria has been a main focus in gastro-intestinal infections caused primarily due to the consumption of contaminated seafood. It was shown to survive in magnesium concentrations as high as 300 mM which are toxic to various other micro-organisms. Several genes of V. parahaemolyticus were studied, among which gbpA (N-acetyl glucosamine binding protein) was reported in Vibrio cholerae.
Macrobrachium rosenbergii is well-known as the giant freshwater prawn, and is a commercially significant source of seafood. Its production can be affected by various bacterial contaminations. Among which, the genus Vibrio shows a higher prevalence in aquatic organisms, especially M. rosenbergii, causing food-borne illnesses. Vibrio parahaemolyticus, a species of Vibrio is reported as the main causative of the early mortality syndrome. Vibrio parahaemolyticus infection in M. rosenbergii was studied previously in relation to the prawn's differentially expressed immune genes. In the current review, we will discuss the growth conditions for both V. parahaemolyticus and M. rosenbergii and highlight the role of magnesium in common, which need to be fully understood. Till date, there has not been much research on this aspect of magnesium. We postulate a model that screens a magnesium-dependent pathway which probably might take effect in connection with N-acetylglucosamine binding protein and chitin from V. parahaemolyticus and M. rosenbergii, respectively. Further studies on magnesium as an environment for V. parahaemolyticus and M. rosenbergii interaction studies will provide seafood industry with completely new strategies to employ and to avoid seafood related contaminations.
The Malaysian giant freshwater prawn, Macrobrachium rosenbergii, is an economically important crustacean worldwide. However, production of this prawn is facing a serious threat from Vibriosis disease caused by Vibrio species such as Vibrio parahaemolyticus. Unfortunately, the mechanisms involved in the immune response of this species to bacterial infection are not fully understood. We therefore used a high-throughput deep sequencing technology to investigate the transcriptome and comparative expression profiles of the hepatopancreas from this freshwater prawn infected with V. parahaemolyticus to gain an increased understanding of the molecular mechanisms underlying the species' immune response to this pathogenic bacteria.
Vibrio parahaemolyticus, an important human pathogen, is associated with gastroenteritis and transmitted through partially cooked seafood. It has become a major concern in the production and trade of marine food products. The prevalence of potentially virulent and pathogenic V. parahaemolyticus in raw seafood is of public health significance. Here we describe the genome sequence of a V. parahaemolyticus isolate of crustacean origin which was cultured from prawns in 2008 in Selangor, Malaysia (isolate PCV08-7). The next generation sequencing and analysis revealed that the genome of isolate PCV08-7 has closest similarity to that of V. parahaemolyticus RIMD2210633. However, there are certain unique features of the PCV08-7 genome such as the absence of TDH-related hemolysin (TRH), and the presence of HU-alpha insertion. The genome of isolate PCV08-7 encodes a thermostable direct hemolysin (TDH), an important virulence factor that classifies PCV08-7 isolate to be a serovariant of O3:K6 strain. Apart from these, we observed that there is certain pattern of genetic rearrangements that makes V. parahaemolyticus PCV08-7 a non-pandemic clone. We present detailed genome statistics and important genetic features of this bacterium and discuss how its survival, adaptation and virulence in marine and terrestrial hosts can be understood through the genomic blueprint and that the availability of genome sequence entailing this important Malaysian isolate would likely enhance our understanding of the epidemiology, evolution and transmission of foodborne Vibrios in Malaysia and elsewhere.