A panel of monoclonal antibodies specific to Hong Kong Chinese nasopharyngeal carcinoma (NPC)-associated Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) variants has been generated. These monoclonal antibodies not only differentiate the Hong Kong Chinese NPC-associated LMP1 variants from the prototype B95-8 LMP1, derived from Caucasian infectious mononucleosis, but also differentiate the 2 highly homologous LMP1 deletion variants commonly found in Hong Kong primary NPC. The predominant deletion type variant, DV-Asp335, is characterized by an aspartic acid at residue 335 located in the cytoplasmic C-terminal region, whereas the other minor deletion variant, DV-Gly335, has a glycine in the same residue position. 335D is hitherto found predominantly in LMP1 of the China 1 strain in association with NPC in the Chinese populations located in southern China and Malaysia. These antibodies, which are applicable in ELISA, immunofluorescence, immunoprecipitation, immunoblotting and immunohistochemistry on paraffin sections, are the first variant-specific anti-LMP1 monoclonal antibodies produced, and will be useful in investigating the functional significance of 335D in NPC.
Interplay between EBV infection and acquired genetic alterations during nasopharyngeal carcinoma (NPC) development remains vague. Here we report a comprehensive genomic analysis of 70 NPCs, combining whole-genome sequencing (WGS) of microdissected tumor cells with EBV oncogene expression to reveal multiple aspects of cellular-viral co-operation in tumorigenesis. Genomic aberrations along with EBV-encoded LMP1 expression underpin constitutive NF-κB activation in 90% of NPCs. A similar spectrum of somatic aberrations and viral gene expression undermine innate immunity in 79% of cases and adaptive immunity in 47% of cases; mechanisms by which NPC may evade immune surveillance despite its pro-inflammatory phenotype. Additionally, genomic changes impairing TGFBR2 promote oncogenesis and stabilize EBV infection in tumor cells. Fine-mapping of CDKN2A/CDKN2B deletion breakpoints reveals homozygous MTAP deletions in 32-34% of NPCs that confer marked sensitivity to MAT2A inhibition. Our work concludes that NPC is a homogeneously NF-κB-driven and immune-protected, yet potentially druggable, cancer.