Oligostilbenoids (e.g., ampelopsin F, viniferin, pallidol) result from homogeneous or heterogeneous coupling of monomeric stilbenoid units, leading to various chemical structures. Oligostilbenoid synthesis is regio- and stereocontrolled. To tackle this regio- and stereocontrol, a supramolecular chemistry approach is required that can be achieved by quantum chemistry. The stability of noncovalent π-stacks, formed between two stilbenoid units prior to oxidation, is accurately evaluated with density functional theory (DFT) including dispersive effects (within the DFT-D formalism). These noncovalent arrangements drive the regiocontrol. The rest of the chemical pathway is a succession of dearomatization and rearomatization stages. The thermodynamics and kinetics of the processes are calculated with classical hybrid functionals. This study allows discrimination between the two main possible chemical pathways, namely, radical-neutral and radical-radical reactions. The former appears more likely, thermodynamics and kinetics being in perfect agreement with the experimental 1:2 ratio obtained for ampelopsin F:pallidol analogues, respectively.
Phenolic Schiff bases are known for their diverse biological activities and ability to scavenge free radicals. To elucidate (1) the structure-antioxidant activity relationship of a series of thirty synthetic derivatives of 2-methoxybezohydrazide phenolic Schiff bases and (2) to determine the major mechanism involved in free radical scavenging, we used density functional theory calculations (B3P86/6-31+(d,p)) within polarizable continuum model. The results showed the importance of the bond dissociation enthalpies (BDEs) related to the first and second (BDEd) hydrogen atom transfer (intrinsic parameters) for rationalizing the antioxidant activity. In addition to the number of OH groups, the presence of a bromine substituent plays an interesting role in modulating the antioxidant activity. Theoretical thermodynamic and kinetic studies demonstrated that the free radical scavenging by these Schiff bases mainly proceeds through proton-coupled electron transfer rather than sequential proton loss electron transfer, the latter mechanism being only feasible at relatively high pH.