Displaying all 3 publications

Abstract:
Sort:
  1. Chen C, Yi R, Igisu M, Sakaguchi C, Afrin R, Potiszil C, et al.
    Small Methods, 2023 Dec;7(12):e2300119.
    PMID: 37203261 DOI: 10.1002/smtd.202300119
    α-Hydroxy acids are prebiotic monomers that undergo dehydration synthesis to form polyester gels, which assemble into membraneless microdroplets upon aqueous rehydration. These microdroplets are proposed as protocells that can segregate and compartmentalize primitive molecules/reactions. Different primitive aqueous environments with a variety of salts could have hosted chemistries that formed polyester microdroplets. These salts could be essential cofactors of compartmentalized prebiotic reactions or even directly affect protocell structure. However, fully understanding polyester-salt interactions remains elusive, partially due to technical challenges of quantitative measurements in condensed phases. Here, spectroscopic and biophysical methods are applied to analyze salt uptake by polyester microdroplets. Inductively coupled plasma mass spectrometry is applied to measure the cation concentration within polyester microdroplets after addition of chloride salts. Combined with methods to determine the effects of salt uptake on droplet turbidity, size, surface potential and internal water distribution, it was observed that polyester microdroplets can selectively partition salt cations, leading to differential microdroplet coalescence due to ionic screening effects reducing electrostatic repulsion forces between microdroplets. Through applying existing techniques to novel analyses related to primitive compartment chemistry and biophysics, this study suggests that even minor differences in analyte uptake can lead to significant protocellular structural change.
  2. Chen C, Yi R, Igisu M, Afrin R, Sithamparam M, Chandru K, et al.
    Proc Natl Acad Sci U S A, 2025 Mar 25;122(12):e2419554122.
    PMID: 40117315 DOI: 10.1073/pnas.2419554122
    α-hydroxy acids (αHAs), simple and prebiotically plausible organic monomers, were likely present in various environments on and off Earth and could have played a role in directing the emergence of the first homochiral living systems. Some αHAs, which could have been of varying chirality, can undergo dehydration polymerization into polyesters, which could assemble into membraneless microdroplets upon rehydration; understanding these processes is critical for unraveling how simple prebiotic molecules transitioned into more complex systems capable of supporting selective chemical reactions, a key step toward the origin of life. Here, we focused on tartaric acid (TA), a prebiotically relevant αHA with multiple chiral forms, to probe plausible mechanisms by which primitive αHA and polyester-based systems could have participated in selective homochiral polymer synthesis. Enantiopure solutions of d-TA or l-TA polymerize efficiently via dehydration, while racemic dl-TA polymerization is inhibited due to stereochemical incompatibility. We found that Ca2+ ions influence this process in two significant ways: 1) regulating TA monomer availability through selective crystallization, removing equal amounts of both enantiomers in racemic proportion and thereby enriching the enantiomeric excess of the remaining nonracemic TA solution; and 2) modulating polymerization by suppressing enantiopure TA polymerization while enabling dl-TA polymerization. These findings suggest that the differential availability of simple inorganic ions, such as Ca2+, could have indirectly mediated the selection of simple organic chiral monomers and the emergence of homochirality in primitive protocell-forming polymers, offering a pathway from nonliving to living matter in early Earth environments.
  3. Ji F, Tran S, Ogawa E, Huang CF, Suzuki T, Wong YJ, et al.
    J Clin Transl Hepatol, 2024 Jul 28;12(7):646-658.
    PMID: 38993510 DOI: 10.14218/JCTH.2024.00089
    BACKGROUND AND AIMS: As practice patterns and hepatitis C virus (HCV) genotypes (GT) vary geographically, a global real-world study from both East and West covering all GTs can help inform practice policy toward the 2030 HCV elimination goal. This study aimed to assess the effectiveness and tolerability of DAA treatment in routine clinical practice in a multinational cohort for patients infected with all HCV GTs, focusing on GT3 and GT6.

    METHODS: We analyzed the sustained virological response (SVR12) of 15,849 chronic hepatitis C patients from 39 Real-World Evidence from the Asia Liver Consortium for HCV clinical sites in Asia Pacific, North America, and Europe between 07/01/2014-07/01/2021.

    RESULTS: The mean age was 62±13 years, with 49.6% male. The demographic breakdown was 91.1% Asian (52.9% Japanese, 25.7% Chinese/Taiwanese, 5.4% Korean, 3.3% Malaysian, and 2.9% Vietnamese), 6.4% White, 1.3% Hispanic/Latino, and 1% Black/African-American. Additionally, 34.8% had cirrhosis, 8.6% had hepatocellular carcinoma (HCC), and 24.9% were treatment-experienced (20.7% with interferon, 4.3% with direct-acting antivirals). The largest group was GT1 (10,246 [64.6%]), followed by GT2 (3,686 [23.2%]), GT3 (1,151 [7.2%]), GT6 (457 [2.8%]), GT4 (47 [0.3%]), GT5 (1 [0.006%]), and untyped GTs (261 [1.6%]). The overall SVR12 was 96.9%, with rates over 95% for GT1/2/3/6 but 91.5% for GT4. SVR12 for GT3 was 95.1% overall, 98.2% for GT3a, and 94.0% for GT3b. SVR12 was 98.3% overall for GT6, lower for patients with cirrhosis and treatment-experienced (TE) (93.8%) but ≥97.5% for treatment-naive patients regardless of cirrhosis status. On multivariable analysis, advanced age, prior treatment failure, cirrhosis, active HCC, and GT3/4 were independent predictors of lower SVR12, while being Asian was a significant predictor of achieving SVR12.

    CONCLUSIONS: In this diverse multinational real-world cohort of patients with various GTs, the overall cure rate was 96.9%, despite large numbers of patients with cirrhosis, HCC, TE, and GT3/6. SVR12 for GT3/6 with cirrhosis and TE was lower but still excellent (>91%).

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links