Displaying all 2 publications

Abstract:
Sort:
  1. Tan KH, Chen YW, Van CN, Wang H, Chen JW, Lim FS, et al.
    ACS Appl Mater Interfaces, 2019 Jan 09;11(1):1655-1664.
    PMID: 30561192 DOI: 10.1021/acsami.8b17758
    The ability of band offsets at multiferroic/metal and multiferroic/electrolyte interfaces in controlling charge transfer and thus altering the photoactivity performance has sparked significant attention in solar energy conversion applications. Here, we demonstrate that the band offsets of the two interfaces play the key role in determining charge transport direction in a downward self-polarized BFO film. Electrons tend to move to BFO/electrolyte interface for water reduction. Our experimental and first-principle calculations reveal that the presence of neodymium (Nd) dopants in BFO enhances the photoelectrochemical performance by reduction of the local electron-hole pair recombination sites and modulation of the band gap to improve the visible light absorption. This opens a promising route to the heterostructure design by modulating the band gap to promote efficient charge transfer.
  2. Huang YL, Chang WS, Van CN, Liu HJ, Tsai KA, Chen JW, et al.
    Nanoscale, 2016 Aug 25;8(34):15795-801.
    PMID: 27533610 DOI: 10.1039/c6nr04997d
    Ferroelectric photoelectrodes, other than conventional semiconductors, are alternative photo-absorbers in the process of water splitting. However, the capture of photons and efficient transfer of photo-excited carriers remain as two critical issues in ferroelectric photoelectrodes. In this work, we overcome the aforementioned issues by decorating the ferroelectric BiFeO3 (BFO) surface with Au nanocrystals, and thus improving the photoelectrochemical (PEC) performance of BFO film. We demonstrate that the internal field induced by the spontaneous polarization of BFO can (1) tune the efficiency of the photo-excited carriers' separation and charge transfer characteristics in bare BFO photoelectrodes, and (2) modulate an extra optical absorption within the visible light region, created by the surface plasmon resonance excitation of Au nanocrystals to capture more photons in the Au/BFO heterostructure. This study provides key insights for understanding the tunable features of PEC performance, composed of the heterostructure of noble metals and ferroelectric materials.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links