Displaying all 2 publications

Abstract:
Sort:
  1. Catapano M, Vergnano M, Romano M, Mahil SK, Choon SE, Burden AD, et al.
    J Invest Dermatol, 2020 04;140(4):816-826.e3.
    PMID: 31539532 DOI: 10.1016/j.jid.2019.08.444
    Psoriasis is an immune-mediated skin disorder associated with severe systemic comorbidities. Whereas IL-36 is a key disease driver, the pathogenic role of this cytokine has mainly been investigated in skin. Thus, its effects on systemic immunity and extracutaneous disease manifestations remain poorly understood. To address this issue, we investigated the consequences of excessive IL-36 activity in circulating immune cells. We initially focused our attention on generalized pustular psoriasis (GPP), a clinical variant associated with pervasive upregulation of IL-36 signaling. By undertaking blood and neutrophil RNA sequencing, we demonstrated that affected individuals display a prominent IFN-I signature, which correlates with abnormal IL-36 activity. We then validated the association between IL-36 deregulation and IFN-I over-expression in patients with severe psoriasis vulgaris (PV). We also found that the activation of IFN-I genes was associated with extracutaneous morbidity, in both GPP and PV. Finally, we undertook mechanistic experiments, demonstrating that IL-36 acts directly on plasmacytoid dendritic cells, where it potentiates toll-like receptor (TLR)-9 activation and IFN-α production. This effect was mediated by the upregulation of PLSCR1, a phospholipid scramblase mediating endosomal TLR-9 translocation. These findings identify an IL-36/ IFN-I axis contributing to extracutaneous inflammation in psoriasis.
  2. Vergnano M, Mockenhaupt M, Benzian-Olsson N, Paulmann M, Grys K, Mahil SK, et al.
    Am J Hum Genet, 2020 09 03;107(3):539-543.
    PMID: 32758448 DOI: 10.1016/j.ajhg.2020.06.020
    The identification of disease alleles underlying human autoinflammatory diseases can provide important insights into the mechanisms that maintain neutrophil homeostasis. Here, we focused our attention on generalized pustular psoriasis (GPP), a potentially life-threatening disorder presenting with cutaneous and systemic neutrophilia. Following the whole-exome sequencing of 19 unrelated affected individuals, we identified a subject harboring a homozygous splice-site mutation (c.2031-2A>C) in MPO. This encodes myeloperoxidase, an essential component of neutrophil azurophil granules. MPO screening in conditions phenotypically related to GPP uncovered further disease alleles in one subject with acral pustular psoriasis (c.2031-2A>C;c.2031-2A>C) and in two individuals with acute generalized exanthematous pustulosis (c.1705C>T;c.2031-2A>C and c.1552_1565del;c.1552_1565del). A subsequent analysis of UK Biobank data demonstrated that the c.2031-2A>C and c.1705C>T (p.Arg569Trp) disease alleles were also associated with increased neutrophil abundance in the general population (p = 5.1 × 10-6 and p = 3.6 × 10-5, respectively). The same applied to three further deleterious variants that had been genotyped in the cohort, with two alleles (c.995C>T [p.Ala332Val] and c.752T>C [p.Met251Thr]) yielding p values < 10-10. Finally, treatment of healthy neutrophils with an MPO inhibitor (4-Aminobenzoic acid hydrazide) increased cell viability and delayed apoptosis, highlighting a mechanism whereby MPO mutations affect granulocyte numbers. These findings identify MPO as a genetic determinant of pustular skin disease and neutrophil abundance. Given the recent interest in the development of MPO antagonists for the treatment of neurodegenerative disease, our results also suggest that the pro-inflammatory effects of these agents should be closely monitored.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links