Displaying all 2 publications

Abstract:
Sort:
  1. Saha S, Chadha M, Al Mamun A, Rahman M, Sturm-Ramirez K, Chittaganpitch M, et al.
    Bull World Health Organ, 2014 May 01;92(5):318-30.
    PMID: 24839321 DOI: 10.2471/BLT.13.124412
    OBJECTIVE: To characterize influenza seasonality and identify the best time of the year for vaccination against influenza in tropical and subtropical countries of southern and south-eastern Asia that lie north of the equator.

    METHODS: Weekly influenza surveillance data for 2006 to 2011 were obtained from Bangladesh, Cambodia, India, Indonesia, the Lao People's Democratic Republic, Malaysia, the Philippines, Singapore, Thailand and Viet Nam. Weekly rates of influenza activity were based on the percentage of all nasopharyngeal samples collected during the year that tested positive for influenza virus or viral nucleic acid on any given week. Monthly positivity rates were then calculated to define annual peaks of influenza activity in each country and across countries.

    FINDINGS: Influenza activity peaked between June/July and October in seven countries, three of which showed a second peak in December to February. Countries closer to the equator had year-round circulation without discrete peaks. Viral types and subtypes varied from year to year but not across countries in a given year. The cumulative proportion of specimens that tested positive from June to November was > 60% in Bangladesh, Cambodia, India, the Lao People's Democratic Republic, the Philippines, Thailand and Viet Nam. Thus, these tropical and subtropical countries exhibited earlier influenza activity peaks than temperate climate countries north of the equator.

    CONCLUSION: Most southern and south-eastern Asian countries lying north of the equator should consider vaccinating against influenza from April to June; countries near the equator without a distinct peak in influenza activity can base vaccination timing on local factors.

  2. van Panhuis WG, Choisy M, Xiong X, Chok NS, Akarasewi P, Iamsirithaworn S, et al.
    Proc Natl Acad Sci U S A, 2015 Oct 20;112(42):13069-74.
    PMID: 26438851 DOI: 10.1073/pnas.1501375112
    Dengue is a mosquito-transmitted virus infection that causes epidemics of febrile illness and hemorrhagic fever across the tropics and subtropics worldwide. Annual epidemics are commonly observed, but there is substantial spatiotemporal heterogeneity in intensity. A better understanding of this heterogeneity in dengue transmission could lead to improved epidemic prediction and disease control. Time series decomposition methods enable the isolation and study of temporal epidemic dynamics with a specific periodicity (e.g., annual cycles related to climatic drivers and multiannual cycles caused by dynamics in population immunity). We collected and analyzed up to 18 y of monthly dengue surveillance reports on a total of 3.5 million reported dengue cases from 273 provinces in eight countries in Southeast Asia, covering ∼ 10(7) km(2). We detected strong patterns of synchronous dengue transmission across the entire region, most markedly during a period of high incidence in 1997-1998, which was followed by a period of extremely low incidence in 2001-2002. This synchrony in dengue incidence coincided with elevated temperatures throughout the region in 1997-1998 and the strongest El Niño episode of the century. Multiannual dengue cycles (2-5 y) were highly coherent with the Oceanic Niño Index, and synchrony of these cycles increased with temperature. We also detected localized traveling waves of multiannual dengue epidemic cycles in Thailand, Laos, and the Philippines that were dependent on temperature. This study reveals forcing mechanisms that drive synchronization of dengue epidemics on a continental scale across Southeast Asia.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links