Displaying all 2 publications

Abstract:
Sort:
  1. Fahmi MZ, Sugito SFA, Wibrianto A, Novania S, Widyastuti S, Ahmad MA, et al.
    Nanotheranostics, 2024;8(4):521-534.
    PMID: 39507106 DOI: 10.7150/ntno.96559
    This study introduces an innovative magnetic-based multifunctional anti-cancer drug carrier aiming to enhance the efficacy of curcumin in cancer therapy. The research investigates the potential of Graphene Quantum Dots (GQDs) as a curcumin drug delivery system for inhibiting in vivo cancer growth. GQDs with a particle diameter below 10 nm were synthesized via hydrothermal and Hummers methods, exhibiting homogeneity and crystalline structure according to AFM and XRD analyses. FTIR analysis confirmed functionalization success, revealing the formation of bonds between GQDs and curcumin. The optical properties of GQDs were assessed using a UV-Vis spectrophotometer and spectrofluorometer, resulting in vigorous fluorescence with a quantum yield of 1.32%. Subsequently, loading curcumin onto GQDs (CQDs/cur) resulted in an efficient system for delivering the anti-cancer drug, demonstrating significant in vivo efficacy. It was indicated by reduced tumor diameter and increased body weight in mice. Furthermore, the release kinetics of curcumin from GQDs were analyzed using the Peppas-Sahlin equation under varying pH conditions (4, 7, and 9), revealing the highest release rate in acidic conditions. In conclusion, this study highlights the potential of GQDs as highly efficient carriers for targeted curcumin delivery, showcasing promising prospects in cancer treatment.
  2. Abdulkareem-Alsultan G, Asikin-Mijan N, Samidin S, Voon Lee H, Chyuan Ong H, Hwa Teo S, et al.
    Chempluschem, 2024 Dec;89(12):e202400368.
    PMID: 39228206 DOI: 10.1002/cplu.202400368
    This study focuses on the sustainable production of bio-jet fuel through the catalytic hydrodeoxygenation (HDO) of isoeugenol (IE). Sucrose-based activated carbon supported bimetallic Platinum-Tin metal sulphides (PtO-SnS/AC) catalyst was prepared for HDO process. Physicochemical properties of catalysts with different spraying synthesis methods (in situ and ex situ metal doping) and Pt loading (0.1-1.0 %) were further investigated. The PtO-SnS/AC catalysts were characterised using various techniques such as X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), field-emission scanning electron microscopy (FESEM) and thermogravimetric analysis (TGA). Both HRTEM and FESEM results show the successful preparation of a spherical nanoparticles doped over activated carbon, and Pt was dispersed on the outer shell of the particles. The catalytic HDO of IE was evaluated in a batch system and showed a high yield and conversion as follows: IE conversion of 100 %, liquid-phase mass balance of 95.92 %, dihydroeugenol (DH) conversion of 99.32 %, propylcyclohexane (PCH) yield of 88.94 % and 2-methoxy-4-propylcyclohexanol (HYD) yield of 76.19 %. Moreover, the PtO-SnS/AC catalyst exhibited high reusability with low metal leaching and high coke resistance for 10 cycles. The catalyst was evaluated in a continuous flow reactor for 100 h at different reaction temperatures, and interestingly, the catalyst showed low deactivation with a high half-time.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links