Displaying all 3 publications

Abstract:
Sort:
  1. Azarisman SM, Teo KS, Worthley MI, Worthley SG
    World J Cardiol, 2014 Jun 26;6(6):405-14.
    PMID: 24976912 DOI: 10.4330/wjc.v6.i6.405
    Cardiovascular disease (CVD) is the leading cause of death in the western world and is becoming more important in the developing world. Recently, advances in monitoring, revascularisation and pharmacotherapy have resulted in a reduction in mortality. However, although mortality rates have declined, the burden of disease remains large resulting in high direct and indirect healthcare costs related to CVDs. In Australia, acute coronary syndrome (ACS) accounts for more than 300000 years of life lost due to premature death and a total cost exceeding eight billion dollars annually. It is also the main contributor towards the discrepancy in life expectancy between indigenous and non-indigenous Australians. The high prevalence of CVD along with its associated cost urgently requires a reliable but non-invasive and cost-effective imaging modality. The imaging modality of choice should be able to accelerate the diagnosis of ACS, aid in the risk stratification of de novo coronary artery disease and avail incremental information of prognostic value such as viability which cardiovascular magnetic resonance (CMR) allows. Despite its manifold benefits, there are limitations to its wider use in routine clinical assessment and more studies are required into assessing its cost-effectiveness. It is hoped that with greater development in the technology and imaging protocols, CMR could be made less cumbersome, its imaging protocols less lengthy, the technology more inexpensive and easily applied in routine clinical practice.
  2. Azarisman SM, Teo KS, Worthley MI, Worthley SG
    J Int Med Res, 2017 Dec;45(6):1680-1692.
    PMID: 29239257 DOI: 10.1177/0300060517698265
    Chest pain is an important presenting symptom. However, few cases of chest pain are diagnosed as acute coronary syndrome (ACS) in the acute setting. This results in frequent inappropriate discharge and major delay in treatment for patients with underlying ACS. The conventional methods of assessing ACS, which include electrocardiography and serological markers of infarct, can take time to manifest. Recent studies have investigated more sensitive and specific imaging modalities that can be used. Diastolic dysfunction occurs early following coronary artery occlusion and its detection is useful in confirming the diagnosis, risk stratification, and prognosis post-ACS. Cardiac magnetic resonance provides a single imaging modality for comprehensive evaluation of chest pain in the acute setting. In particular, cardiac magnetic resonance has many imaging techniques that assess diastolic dysfunction post-coronary artery occlusion. Techniques such as measurement of left atrial size, mitral inflow, and mitral annular and pulmonary vein flow velocities with phase-contrast imaging enable general assessment of ventricular diastolic function. More novel imaging techniques, such as T2-weighted imaging for oedema, T1 mapping, and myocardial tagging, allow early determination of regional diastolic dysfunction and oedema. These findings may correspond to specific infarcted arteries that may be used to tailor eventual percutaneous coronary artery intervention.
  3. Azarisman SM, Carbone A, Shirazi M, Bradley J, Teo KS, Worthley MI, et al.
    Heart Lung Circ, 2016 Nov;25(11):1094-1106.
    PMID: 27210302 DOI: 10.1016/j.hlc.2016.03.011
    BACKGROUND: Cardiovascular magnetic resonance (CMR) advances in imaging techniques, permits the ability to accurately characterise tissue injury post myocardial infarction. Pre-contrast T1 mapping enables this through measurement of pre-contrast T1 relaxation times. We investigate the relationship between T1 characterisation of myocardial injury with global and regional diastolic function.

    METHODS: Revascularised acute myocardial infarction patients with normal left ventricular (LV) systolic function on TTE were assessed by 1.5T CMR. Acute regional diastolic wall motion abnormalities, global diastolic function measurements, acute segmental damage fraction with LGE and mean segmental pre-contrast T1 values were assessed on matching short axis slices.

    RESULTS: Forty-four patients were analysed. Mean LVEF was 62.1±9.4%. No difference between NSTEMI (22/44) and STEMI in mean pre-contrast T1 values of infarcted (1025.0±109.2 vs 1011.0±81.6ms, p=0.70), adjacent (948.3±45.3 vs 941.1±46.6ms, p=0.70) and remote (888.8±52.8 vs 881.2±54.5ms, p=0.66) segments was detected. There was no correlation between pre-contrast T1 of infarcted segments with global diastolic dysfunction (E/A, r(2)=0.216, p=0.06; S/D, r(2)=0.243, p=0.053; E/E', r(2)=0.240, p=0.072), but there was significantly positive, moderate correlation with circumferential diastolic strain rate, (r(2)=0.579, p<0.01) with excellent agreement and reproducibility.

    CONCLUSION: Cardiac magnetic resonance evaluation of pre-contrast T1 values revealed no difference between NSTEMI and STEMI patients in terms of tissue characterisation post-myocardial infarction. However, pre-contrast T1 of infarcted tissue is significantly correlated with regional diastolic circumferential strain rate.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links