To isolate and identify the pathogen of Dengue fever from Shenzhen city in 2005 - 2006, and to analyze the molecular characteristics of the isolated Dengue virus strain as well as to explore its possible origin.
Coxsackievirus A16 (CV-A16) of the genotypes B1a and B1b have co-circulated in mainland China in the past decades. From 2013 to 2017, a total of 3,008 specimens from 3,008 patients with mild hand, foot, and mouth disease were collected in the present study. Viral RNA was tested for CV-A16 by a real-time RT-PCR method, and complete VP1 sequences and full-length genome sequences of CV-A16 strains from this study were determined by RT-PCR and sequencing. Sequences were analyzed using a series of bioinformatics programs. The detection rate for CV-A16 was 4.1%, 25.9%, 10.6%, 28.1% and 12.9% in 2013, 2014, 2015, 2016 and 2017, respectively. Overall, the detection rate for CV-A16 was 16.5% (497/3008) in this 5-year period in Shenzhen, China. One hundred forty-two (142/155, 91.6%) of the 155 genotype B1 strains in the study belonged to subgenotype B1b, and 13 (13/155, 8.4%) strains belonged to subgenotype B1a. Two strains (CVA16/Shenzhen174/CHN/2017 and CVA16/Shenzhen189/CHN/2017) could not be assigned to a known genotype. Phylogenetic analysis of these two strains and other Chinese CV-A16 strains indicated that these two CV-A16 strains clustered independently in a novel clade whose members differed by 8.4%-11.8%, 8.4%-12.1%, and 14.6%-14.8% in their nucleotide sequences from those of Chinese B1a, B1b, and genotype D strains, respectively. Phylogenetic analysis of global CV-A16 strains further indicated that the two novel CV-A16 strains from this study grouped in a previously uncharacterized clade, which was designated as the subgenogroup B3 in present study. Meanwhile, phylogenetic reconstruction revealed two other new genotypes, B1d and B4, which included a Malaysian strain and two American strains, respectively. The complete genome sequences of the two novel CV-A16 strains showed the highest nucleotide sequence identity of 92.3% to the Malaysian strain PM-15765-00 from 2000. Comparative analysis of amino acid sequences of the two novel CV-A16 strains and their relatives suggested that variations in the nonstructural proteins may play an important role in the evolution of modern CV-A16.