Displaying all 6 publications

Abstract:
Sort:
  1. Shazleen SS, Yasim-Anuar TAT, Ibrahim NA, Hassan MA, Ariffin H
    Polymers (Basel), 2021 Jan 27;13(3).
    PMID: 33513688 DOI: 10.3390/polym13030389
    Polylactic acid (PLA), a potential alternative material for single use plastics, generally portrays a slow crystallization rate during melt-processing. The use of a nanomaterial such as cellulose nanofibers (CNF) may affect the crystallization rate by acting as a nucleating agent. CNF at a certain wt.% has been evidenced as a good reinforcement material for PLA; nevertheless, there is a lack of information on the correlation between the amount of CNF in PLA that promotes its functionality as reinforcement material, and its effect on PLA nucleation for improving the crystallization rate. This work investigated the nucleation effect of PLA incorporated with CNF at different fiber loading (1-6 wt.%) through an isothermal and non-isothermal crystallization kinetics study using differential scanning calorimetry (DSC) analysis. Mechanical properties of the PLA/CNF nanocomposites were also investigated. PLA/CNF3 exhibited the highest crystallization onset temperature and enthalpy among all the PLA/CNF nanocomposites. PLA/CNF3 also had the highest crystallinity of 44.2% with an almost 95% increment compared to neat PLA. The highest crystallization rate of 0.716 min-1 was achieved when PLA/CNF3 was isothermally melt crystallized at 100 °C. The crystallization rate was 65-fold higher as compared to the neat PLA (0.011 min-1). At CNF content higher than 3 wt.%, the crystallization rate decreased, suggesting the occurrence of agglomeration at higher CNF loading as evidenced by the FESEM micrographs. In contrast to the tensile properties, the highest tensile strength and Young's modulus were recorded by PLA/CNF4 at 76.1 MPa and 3.3 GPa, respectively. These values were, however, not much different compared to PLA/CNF3 (74.1 MPa and 3.3 GPa), suggesting that CNF at 3 wt.% can be used to improve both the crystallization rate and the mechanical properties. Results obtained from this study revealed the dual function of CNF in PLA nanocomposite, namely as nucleating agent and reinforcement material. Being an organic and biodegradable material, CNF has an increased advantage for use in PLA as compared to non-biodegradable material and is foreseen to enhance the potential use of PLA in single use plastics applications.
  2. Yasim-Anuar TAT, Ariffin H, Norrrahim MNF, Hassan MA, Andou Y, Tsukegi T, et al.
    Polymers (Basel), 2020 Apr 17;12(4).
    PMID: 32316664 DOI: 10.3390/polym12040927
    Two different liquid assisted processing methods: internal melt-blending (IMB) and twin-screw extrusion (TWS) were performed to fabricate polyethylene (PE)/cellulose nanofiber (CNF) nanocomposites. The nanocomposites consisted maleic anhydride-grafted PE (PEgMA) as a compatibilizer, with PE/PEgMA/CNF ratio of 97/3/0.5-5 (wt./wt./wt.), respectively. Morphological analysis exhibited that CNF was well-dispersed in nanocomposites prepared by liquid-assisted TWS. Meanwhile, a randomly oriented and agglomerated CNF was observed in the nanocomposites prepared by liquid-assisted IMB. The nanocomposites obtained from liquid-assisted TWS exhibited the best mechanical properties at 3 wt.% CNF addition with an increment in flexural strength by almost 139%, higher than that of liquid-assisted IMB. Results from this study indicated that liquid feeding of CNF assisted the homogenous dispersion of CNF in PE matrix, and the mechanical properties of the nanocomposites were affected by compounding method due to the CNF dispersion and alignment.
  3. Sharip NS, Ariffin H, Yasim-Anuar TAT, Andou Y, Shirosaki Y, Jawaid M, et al.
    Polymers (Basel), 2021 Jan 27;13(3).
    PMID: 33513876 DOI: 10.3390/polym13030404
    The major hurdle in melt-processing of ultra-high molecular weight polyethylene (UHMWPE) nanocomposite lies on the high melt viscosity of the UHMWPE, which may contribute to poor dispersion and distribution of the nanofiller. In this study, UHMWPE/cellulose nanofiber (UHMWPE/CNF) bionanocomposites were prepared by two different blending methods: (i) melt blending at 150 °C in a triple screw kneading extruder, and (ii) non-melt blending by ethanol mixing at room temperature. Results showed that melt-processing of UHMWPE without CNF (MB-UHMWPE/0) exhibited an increment in yield strength and Young's modulus by 15% and 25%, respectively, compared to the Neat-UHMWPE. Tensile strength was however reduced by almost half. Ethanol mixed sample without CNF (EM-UHMWPE/0) on the other hand showed slight decrement in all mechanical properties tested. At 0.5% CNF inclusion, the mechanical properties of melt-blended bionanocomposites (MB-UHMWPE/0.5) were improved as compared to Neat-UHMWPE. It was also found that the yield strength, elongation at break, Young's modulus, toughness and crystallinity of MB-UHMWPE/0.5 were higher by 28%, 61%, 47%, 45% and 11%, respectively, as compared to the ethanol mixing sample (EM-UHMWPE/0.5). Despite the reduction in tensile strength of MB-UHMWPE/0.5, the value i.e., 28.4 ± 1.0 MPa surpassed the minimum requirement of standard specification for fabricated UHMWPE in surgical implant application. Overall, melt-blending processing is more suitable for the preparation of UHMWPE/CNF bionanocomposites as exhibited by their characteristics presented herein. A better mechanical interlocking between UHMWPE and CNF at high temperature mixing with kneading was evident through FE-SEM observation, explains the higher mechanical properties of MB-UHMWPE/0.5 as compared to EM-UHMWPE/0.5.
  4. Norrrahim MNF, Ariffin H, Yasim-Anuar TAT, Hassan MA, Ibrahim NA, Yunus WMZW, et al.
    Polymers (Basel), 2021 Mar 28;13(7).
    PMID: 33800573 DOI: 10.3390/polym13071064
    Residual hemicellulose could enhance cellulose nanofiber (CNF) processing as it impedes the agglomeration of the nanocellulose fibrils and contributes to complete nanofibrillation within a shorter period of time. Its effect on CNF performance as a reinforcement material is unclear, and hence this study seeks to evaluate the performance of CNF in the presence of amorphous hemicellulose as a reinforcement material in a polypropylene (PP) nanocomposite. Two types of CNF were prepared: SHS-CNF, which contained about 11% hemicellulose, and KOH-CNF, with complete hemicellulose removal. Mechanical properties of the PP/SHS-CNF and PP/KOH-CNF showed an almost similar increment in tensile strength (31% and 32%) and flexural strength (28% and 29%) when 3 wt.% of CNF was incorporated in PP, indicating that hemicellulose in SHS-CNF did not affect the mechanical properties of the PP nanocomposite. The crystallinity of both PP/SHS-CNF and PP/KOH-CNF nanocomposites showed an almost similar value at 55-56%. A slight decrement in thermal stability was seen, whereby the decomposition temperature at 10% weight loss (Td10%) of PP/SHS-CNF was 6 °C lower at 381 °C compared to 387 °C for PP/KOH-CNF, which can be explained by the degradation of thermally unstable hemicellulose. The results from this study showed that the presence of some portion of hemicellulose in CNF did not affect the CNF properties, suggesting that complete hemicellulose removal may not be necessary for the preparation of CNF to be used as a reinforcement material in nanocomposites. This will lead to less harsh pretreatment for CNF preparation and, hence, a more sustainable nanocomposite can be produced.
  5. Lim KY, Yasim-Anuar TAT, Sharip NS, Ujang FA, Husin H, Ariffin H, et al.
    Polymers (Basel), 2023 Mar 01;15(5).
    PMID: 36904501 DOI: 10.3390/polym15051258
    Lignin is a natural biopolymer with a complex three-dimensional network and it is rich in phenol, making it a good candidate for the production of bio-based polyphenol material. This study attempts to characterize the properties of green phenol-formaldehyde (PF) resins produced through phenol substitution by the phenolated lignin (PL) and bio-oil (BO), extracted from oil palm empty fruit bunch black liquor. Mixtures of PF with varied substitution rates of PL and BO were prepared by heating a mixture of phenol-phenol substitute with 30 wt.% NaOH and 80% formaldehyde solution at 94 °C for 15 min. After that, the temperature was reduced to 80 °C before the remaining 20% formaldehyde solution was added. The reaction was carried out by heating the mixture to 94 °C once more, holding it for 25 min, and then rapidly lowering the temperature to 60 °C, to produce the PL-PF or BO-PF resins. The modified resins were then tested for pH, viscosity, solid content, FTIR, and TGA. Results revealed that the substitution of 5% PL into PF resins is enough to improve its physical properties. The PL-PF resin production process was also deemed environmentally beneficial, as it met 7 of the 8 Green Chemistry Principle evaluation criteria.
  6. Norrrahim MNF, Huzaifah MRM, Farid MAA, Shazleen SS, Misenan MSM, Yasim-Anuar TAT, et al.
    Polymers (Basel), 2021 Aug 31;13(17).
    PMID: 34503011 DOI: 10.3390/polym13172971
    The utilization of lignocellulosic biomass in various applications has a promising potential as advanced technology progresses due to its renowned advantages as cheap and abundant feedstock. The main drawback in the utilization of this type of biomass is the essential requirement for the pretreatment process. The most common pretreatment process applied is chemical pretreatment. However, it is a non-eco-friendly process. Therefore, this review aims to bring into light several greener pretreatment processes as an alternative approach for the current chemical pretreatment. The main processes for each physical and biological pretreatment process are reviewed and highlighted. Additionally, recent advances in the effect of different non-chemical pretreatment approaches for the natural fibres are also critically discussed with a focus on bioproducts conversion.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links