Displaying all 8 publications

Abstract:
Sort:
  1. Teichmann J, Suwarganda EK, Lendewig C, Wilson BD, Yeo WK, Aziz RA, et al.
    J Sport Rehabil, 2016 May;25(2):126-32.
    PMID: 27269799 DOI: 10.1123/jsr.2014-0280
    The Unexpected-Disturbance Program (UDP) promotes exercises in response to so-called involuntary short- to midlatency disturbances.
  2. Teichmann J, Suwarganda EK, Lendewig C, Wilson BD, Yeo WK, Aziz RA, et al.
    J Sport Rehabil, 2016 May;25(2):126-32.
    PMID: 25658597 DOI: 10-1123/jsr.2014-0280
    CONTEXT: The Unexpected-Disturbance Program (UDP) promotes exercises in response to so-called involuntary short- to midlatency disturbances.

    OBJECTIVE: This study investigated the effectiveness of the UDP in the last 6 wk of rehabilitation.

    DESIGN: Pre-post study with 2-tailed paired t tests for limited a priori comparisons to examine differences.

    SETTING: National Sports Institute of Malaysia.

    PARTICIPANTS: 24 Malaysian national athletes.

    INTERVENTIONS: 7 sessions/wk of 90 min with 3 sessions allocated for 5 or 6 UDP exercises.

    MAIN OUTCOMES: Significant improvements for men and women were noted. Tests included 20-m sprint, 1-repetition-maximum single-leg press, standing long jump, single-leg sway, and a psychological questionnaire.

    RESULTS: For men and women, respectively, average strength improvements of 22% (d = 0.96) and 29% (d = 1.05), sprint time of 3% (d = 1.06) and 4% (d = 0.58), and distance jumped of 4% (d = 0.59) and 6% (d = 0.47) were noted. In addition, athletes reported improved perceived confidence in their abilities. All athletes improved in each functional test except for long jump in 2 of the athletes. Mediolateral sway decreased in 18 of the 22 athletes for the injured limb.

    CONCLUSION: The prevention training with UDP resulted in improved conditioning and seems to decrease mediolateral sway.

  3. Tee CCL, Cooke MB, Chong MC, Yeo WK, Camera DM
    Sports Med, 2023 Feb;53(2):327-348.
    PMID: 36441492 DOI: 10.1007/s40279-022-01782-0
    Obesity is a major global health issue and a primary risk factor for metabolic-related disorders. While physical inactivity is one of the main contributors to obesity, it is a modifiable risk factor with exercise training as an established non-pharmacological treatment to prevent the onset of metabolic-related disorders, including obesity. Exposure to hypoxia via normobaric hypoxia (simulated altitude via reduced inspired oxygen fraction), termed hypoxic conditioning, in combination with exercise has been increasingly shown in the last decade to enhance blood glucose regulation and decrease the body mass index, providing a feasible strategy to treat obesity. However, there is no current consensus in the literature regarding the optimal combination of exercise variables such as the mode, duration, and intensity of exercise, as well as the level of hypoxia to maximize fat loss and overall body compositional changes with hypoxic conditioning. In this narrative review, we discuss the effects of such diverse exercise and hypoxic variables on the systematic and myocellular mechanisms, along with physiological responses, implicated in the development of obesity. These include markers of appetite regulation and inflammation, body conformational changes, and blood glucose regulation. As such, we consolidate findings from human studies to provide greater clarity for implementing hypoxic conditioning with exercise as a safe, practical, and effective treatment strategy for obesity.
  4. Tee CCL, Chong MC, Cooke MB, Rahmat N, Yeo WK, Camera DM
    Front Physiol, 2024;15:1396108.
    PMID: 38903909 DOI: 10.3389/fphys.2024.1396108
    Purpose: This study aimed to investigate the combined effects of moderate hypoxia with three different exercise modes on glucose regulation in healthy overweight adults. Methods: Thirteen overweight males (age: 31 ± 4 years; body fat 26.3 ± 3.2%) completed three exercise trials in a randomized crossover design involving 60 min cycling exercise at 90% lactate threshold (LOW), sprint interval training (20 × 4 s all-out; SIT) and lower limb functional bodyweight exercises (8 sets of 4 × 20 s; FEX) under moderate hypoxia (FiO2 = 16.5%). Post-exercise oral glucose tolerance test (OGTT) was performed following each trial. Heart rate, oxygen saturation (SpO2), physical activity enjoyment scale (PACES), and perceptual measures were recorded during each exercise session. Venous blood was collected pre-, immediately post-, and 24 h post-exercise and analysed for plasma glucose and insulin, incremental area under curve (iAUC), and circulating microRNA expression (c-miRs-486-5p, -126-5p, and -21-5p). Interstitial glucose concentrations were measured using continuous glucose monitoring (CGM). Results: Post-exercise OGTT iAUC for plasma glucose and insulin concentration were lower in SIT and LOW vs. control (p < 0.05) while post-exercise interstitial glucose iAUC and c-miRs were not different between exercise modes. Heart rate was greater in SIT vs. LOW and FEX, and FEX vs. LOW (p < 0.05), SpO2 was lower in SIT, while PACES was not different between exercise modes. Perceptual measures were greater in SIT vs. LOW and FEX. Conclusion: Acute SIT and LOW under moderate hypoxia improved post-exercise plasma insulin compared to FEX exercises. Considering SIT was also time-efficient, well tolerated, and enjoyable for participants, this may be the preferred exercise modality for improving glucose regulation in adult males with overweight when combined with moderate hypoxia.
  5. Yeap MW, Loh TC, Chong MC, Yeo WK, Girard O, Tee CCL
    PMID: 39231493 DOI: 10.1123/ijspp.2024-0083
    PURPOSE: We investigated the effects of manipulating running velocity and hypoxic exposure on vastus lateralis muscle oxygenation levels during treadmill running.

    METHODS: Eleven trained male distance runners performed 7 randomized runs at different velocities (8, 10, 12, 14, 16, 18, and 20 km·h-1), each lasting 45 seconds on an instrumented treadmill in normoxia (fraction of inspired oxygen [FiO2] = 20.9%), moderate hypoxia (FiO2 = 16.1%), high hypoxia (FiO2 = 14.1%), and severe hypoxia (FiO2 = 13.0%). Continuous assessment of Tissue Saturation Index (TSI) in the vastus lateralis muscle was conducted using near-infrared spectroscopy. Subsequently, changes in TSI (ΔTSI) data over the final 20 seconds of each run were compared between velocities and conditions.

    RESULTS: There was a significant velocity × condition interaction for ΔTSI% (P < .001, ηp2=.19), with a smaller ΔTSI% decline in normoxia compared with high hypoxia and severe hypoxia at 8 km·h-1 (g = 1.30 and 1.91, respectively), 10 km·h-1 (g = 0.75 and 1.43, respectively), and 12 km·h-1 (g = 1.47 and 1.95, respectively) (pooled values for all conditions: P < .037). The ΔTSI% decline increased with each subsequent velocity increment from 8 km·h-1 (-9.2% [3.7%]) to 20 km·h-1 (-22.5% [4.1%]) irrespective of hypoxia severity (pooled values for all conditions: P < .048).

    CONCLUSIONS: Running at slower velocities in conjunction with high and severe hypoxia reduces vastus lateralis muscle oxygenation levels. Muscle ΔTSI% proves to be a sensitive indicator, underscoring the potential use of near-infrared spectroscopy as a reference index of internal load during treadmill runs.

  6. Li Tee CC, Chong MC, Sundar V, Chok CL, Md Razali MR, Yeo WK, et al.
    Eur J Sport Sci, 2023 Aug;23(8):1581-1590.
    PMID: 35912915 DOI: 10.1080/17461391.2022.2109066
    Acute physiological, perceptual and biomechanical consequences of manipulating both exercise intensity and hypoxic exposure during treadmill running were determined. On separate days, eleven trained individuals ran for 45 s (separated by 135 s of rest) on an instrumented treadmill at seven running speeds (8, 10, 12, 14, 16, 18 and 20 km.h-1) in normoxia (NM, FiO2 = 20.9%), moderate hypoxia (MH, FiO2 = 16.1%), high hypoxia (HH, FiO2 = 14.1%) and severe hypoxia (SH, FiO2 = 13.0%). Running mechanics were collected over 20 consecutive steps (i.e. after running ∼25 s), with concurrent assessment of physiological (heart rate and arterial oxygen saturation) and perceptual (overall perceived discomfort, difficulty breathing and leg discomfort) responses. Two-way repeated-measures ANOVA (seven speeds × four conditions) were used. There was a speed × condition interaction for heart rate (p = 0.045, ηp2 = 0.22), with lower values in NM, MH and HH compared to SH at 8 km.h-1 (125 ± 12, 125 ± 11, 128 ± 12 vs 132 ± 10 b.min-1). Overall perceived discomfort (8 and 16 km.h-1; p = 0.019 and p = 0.007, ηp2  = 0.21, respectively) and perceived difficulty breathing (all speeds; p = 0.023, ηp2  = 0.37) were greater in SH compared to MH, whereas leg discomfort was not influenced by hypoxic exposure. Minimal difference was observed in the twelve kinetics/kinematics variables with hypoxia (p > 0.122; ηp2 = 0.19). Running at slower speeds in combination with severe hypoxia elevates physiological and perceptual responses without a corresponding increase in ground reaction forces.Highlights The extent to which manipulating hypoxia severity (between normoxia and severe hypoxia) and running speed (from 8 to 20 km.h-1) influence acute physiological and perceptual responses, as well as kinetic and kinematic adjustments during treadmill running was determined.Running at slower speeds in combination with severe hypoxia elevates heart rate, while this effect was not apparent at faster speeds.Arterial oxygen saturation was increasingly lower as running speed and hypoxic severity increased.Overall perceived discomfort (8 and 16 km.h-1) and perceived difficulty breathing (all speeds) were lower in moderate hypoxia than in severe hypoxia, whereas leg discomfort remained unchanged with hypoxic exposure.
  7. Lane SC, Camera DM, Lassiter DG, Areta JL, Bird SR, Yeo WK, et al.
    J Appl Physiol (1985), 2015 Sep 15;119(6):643-55.
    PMID: 26112242 DOI: 10.1152/japplphysiol.00857.2014
    We determined the effects of "periodized nutrition" on skeletal muscle and whole body responses to a bout of prolonged exercise the following morning. Seven cyclists completed two trials receiving isoenergetic diets differing in the timing of ingestion: they consumed either 8 g/kg body mass (BM) of carbohydrate (CHO) before undertaking an evening session of high-intensity training (HIT) and slept without eating (FASTED), or consumed 4 g/kg BM of CHO before HIT, then 4 g/kg BM of CHO before sleeping (FED). The next morning subjects completed 2 h of cycling (120SS) while overnight fasted. Muscle biopsies were taken on day 1 (D1) before and 2 h after HIT and on day 2 (D2) pre-, post-, and 4 h after 120SS. Muscle [glycogen] was higher in FED at all times post-HIT (P < 0.001). The cycling bouts increased PGC1α mRNA and PDK4 mRNA (P < 0.01) in both trials, with PDK4 mRNA being elevated to a greater extent in FASTED (P < 0.05). Resting phosphorylation of AMPK(Thr172), p38MAPK(Thr180/Tyr182), and p-ACC(Ser79) (D2) was greater in FASTED (P < 0.05). Fat oxidation during 120SS was higher in FASTED (P = 0.01), coinciding with increases in ACC(Ser79) and CPT1 as well as mRNA expression of CD36 and FABP3 (P < 0.05). Methylation on the gene promoter for COX4I1 and FABP3 increased 4 h after 120SS in both trials, whereas methylation of the PPARδ promoter increased only in FASTED. We provide evidence for shifts in DNA methylation that correspond with inverse changes in transcription for metabolically adaptive genes, although delaying postexercise feeding failed to augment markers of mitochondrial biogenesis.
  8. Teichmann J, Suwarganda EK, Beaven CM, Hébert-Losier K, Lee JW, Tenllado Vallejo F, et al.
    J Sport Rehabil, 2016 Dec 19.
    PMID: 27992260 DOI: 10.1123/jsr.2016-0082
    CONTEXT: Sensorimotor training is commonly used in a rehabilitative setting; however, the effectiveness of an unexpected disturbance program (UDP) to enhance performance measures in uninjured elite athletes is unknown.

    OBJECTIVE: To assess the impact of a three-week UDP program onstrength, power, and proprioceptive measures.

    DESIGN: Matched-group, pre- post design.

    SETTING: National Sports Institute.

    PARTICIPANTS: Twenty-one international-level female field hockey athletes.

    INTERVENTIONS: Two 45 min UDP sessions were incorporated into each week of a three week training program (total 6 sessions).

    MAIN OUTCOME MEASURES: One-repetition maximum strength, lower limb power, 20 m running speed, and proprioception tests were performed before and after the experimental period.

    RESULTS: Substantial improvements in running sprint speed at 5- (4.4 ± 2.6%; Effect Size [ES]: 0.88), 10- (2.1 ± 1.9%; ES: 0.51), and 20-m (1.0 ± 1.6%; ES: 0.23) were observed in the UDP group. Squat jump performance was also clearly enhanced when compared to the control group (3.1 ± 6.1%; ES: 0.23). Small but clear improvements in maximal strength were observed in both groups.

    CONCLUSION: A three week UDP can elicit clear enhancements in running sprint speed and concentric-only jump performance. These improvements are suggestive of enhanced explosive strength and are particularly notable given the elite training status of the cohort and relatively short duration of the intervention. Thus, we would reiterate the statement by Gruber and colleagues (2004) that sensorimotor training is a "highly efficient" modality for improving explosive strength.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links