PURPOSE: This study aims to semiquantitatively evaluate the standardized uptake value (SUV) of 99mTc-methylene diphosphonate (MDP) radionuclide tracer in the normal vertebrae of breast cancer patients using an integrated single-photon emission computed tomography (SPECT)/computed tomography (CT) scanner.
OVERVIEW OF LITERATURE: Molecular imaging techniques using gamma cameras and stand-alone SPECT have traditionally been utilized to evaluate metastatic bone diseases. However, these methods lack quantitative analysis capabilities, impeding accurate uptake characterization.
METHODS: A total of 30 randomly selected female breast cancer patients were enrolled in this study. The SUV mean (SUVmean) and SUV maximum (SUVmax) values for 286 normal vertebrae at the thoracic and lumbar levels were calculated based on the patients' body weight (BW), body surface area (BSA), and lean body mass (LBM). Additionally, 106 degenerative joint disease (DJD) lesions of the spine were also characterized, and both their BW SUVmean and SUVmax values were obtained. A receiver operating characteristic (ROC) curve analysis was then performed to determine the cutoff value of SUV for differentiating DJD from normal vertebrae.
RESULTS: The mean±standard deviations for the SUVmean and SUVmax in the normal vertebrae displayed a relatively wide variability: 3.92±0.27 and 6.51±0.72 for BW, 1.05±0.07 and 1.75±0.17 for BSA, and 2.70±0.19 and 4.50±0.44 for LBM, respectively. Generally, the SUVmean had a lower coefficient of variation than the SUVmax. For DJD, the mean±standard deviation for the BW SUVmean and SUVmax was 5.26±3.24 and 7.50±4.34, respectively. Based on the ROC curve, no optimal cutoff value was found to differentiate DJD from normal vertebrae.
CONCLUSIONS: In this study, the SUV of 99mTc-MDP was successfully determined using SPECT/CT. This research provides an approach that could potentially aid in the clinical quantification of radionuclide uptake in normal vertebrae for the management of breast cancer patients.
PURPOSE: To compare and correlate technetium-99m methylene diphosphonate uptake between benign and metastatic bone lesions using semiquantitative analysis of maximum standard uptake value (SUVmax) and mean Hounsfield unit (HU) in single-photon emission computed tomography-computed tomography (SPECT-CT).
OVERVIEW OF LITERATURE: Qualitative interpretation of metastatic bone lesions in breast cancer on bone scintigraphy is often complicated by coexisting benign lesions.
METHODS: In total, 185 lesions were identified on bone and SPECT-CT scans from 32 patients. Lesions were classified as metastatic (109 sclerotic lesions) and benign (76 lesions) morphologically on low-dose CT. Semiquantitative analysis using SUVmax and mean HU was performed on the lesions and compared. To discriminate benign and metastatic lesions, the correlation between SUVmax and mean HU was determined using the intraclass correlation coefficients.
RESULTS: The SUVmax was higher in metastatic lesions (20.66±14.36) but lower in benign lesions (10.18±12.79) (p<0.001). The mean HU was lower in metastatic lesions (166.62±202.02) but higher in benign lesions (517.65±192.8) (p<0.001). A weak negative correlation was found between the SUVmax and the mean HU for benign lesions, and a weak positive correlation was noted between the SUVmax and the mean HU on malignant lesions with no statistical significance (p=0.394 and 0.312, respectively). The cutoff values obtained were 10.8 for SUVmax (82.6% sensitivity and 84.2% specificity) and 240.86 for the mean HU (98.7% sensitivity and 88.1% specificity) in differentiating benign from malignant bone lesions.
CONCLUSIONS: Semiquantitative assessment using SUVmax and HU can complement qualitative analysis. Metastatic lesions had higher SUVmax but lower mean HU than benign lesions, whereas benign lesions demonstrated higher mean HU but lower SUVmax. A weak correlation was found between the SUVmax and the mean HU on malignant and benign lesions. Cutoff values of 10.8 for the SUVmax and 240.86 for the mean HU may differentiate bone metastases from benign lesions.
METHOD: Formalin-fixed paraffin-embedded tissues of 30 CRC patients were retrieved and reviewed. DNA was isolated from selected tissues. Desirable quality check using Qubit and Nanoquant machine was done, and desirable libraries prepared were loaded into the sequencer for sequencing. Using Illumina BaseSpace and Illumina Variant interpreter, generated FastQ data were treated for annotation, alignment, and mapping with reference genome. Sequencing-runs with Phred-score ≥ 30 were selected as desirable runs. Finally, the variants were validated on NCBI-dsSNP and Ensembl databases for clinical consequence interpretations.
RESULTS: Overall, patient distribution consists of 12(40%) females and 18 (60%) males with mean age (53.2 + 5.3). most patients were in TNM stage-3: 53.3% (15/30) and the least was Stage-4: 20%(6/30) respectively. Overall, 73.3%: (22/30) completed the sequencing, and 552 mutations involving 29 genes and 12 chromosomes were detected. The most upregulated variants are KIT:68(12.3%), FGFR4:61(11.1%), EGFR:60(10.9%), ALK:53(9.6%), DCUN1D1:41(7.4%), PDGFR:40(7.2%), KRAS:33(6.0%), CDK4:27(4.9%), FGFR3:26(4.7%), MTOR:14(2.6), while NRAS, CDK6, PIK3CA, and RET each has 13(2.4%) apiece. Chromosomes 4:134/55(24.2%), chr7:84/552(15.2%), chr12:71/552(12.9%), chr5:64/552(11.6%), chr2:61/552(11.1%), chr3:54/552(9.8%), and chr1:43/552(7.8%) are the most involved chromosomes. Nine genes (APC, NRAS, ALK, PIK3CA, KRAS, IDH1, FGFR1, ERBB2, and ESR1) are identified as pathogenic-causing variants in CRC.
CONCLUSION: This is the first NGS-based molecular study on FFPE-CRC tissues in hospital-USM that showed the most upregulated variants in CRC and identified nine genes as crucial pathogenic variants.