Displaying all 2 publications

Abstract:
Sort:
  1. Zainul Kamal S, Koyama M, Syukri F, Toda T, Tran QNM, Nakasaki K
    Environ Res, 2021 Oct 29.
    PMID: 34743806 DOI: 10.1016/j.envres.2021.112299
    In recent years, attempts have been made to develop a thermophilic composting process for organic sludge to produce ammonia gas for high value-added algal production. However, the hydrolysis of non-dissolved organic nitrogen in sludge is a bottleneck for ammonia conversion. The aim of this study was to identify enzymes that enhance sludge hydrolysis in a thermophilic composting system for ammonia recovery from shrimp pond sludge. This was achieved by screening useful enzymes to degrade non-dissolved nitrogen and subsequently investigating their effectiveness in lab-scale composting systems. Among the four hydrolytic enzyme classes assessed (lysozyme, protease, phospholipase, and collagenase), proteases from Streptomyces griseus were the most effective at hydrolysing non-dissolved nitrogen in the sludge. After composting sludge pre-treated with proteases, the final amount of non-dissolved nitrogen was 46.2% of the total N in the control sample and 22.3% of the total N in the protease sample, thus increasing the ammonia (gaseous and in-compost) conversion efficiency from 41.5% to 56.4% of the total N. The decrease in non-dissolved nitrogen was greater in the protease sample than in the control sample during the pre-treatment period, and no difference was observed during the subsequent composting period. These results suggest that Streptomyces proteases hydrolyse the organic nitrogen fraction, which cannot be degraded by the bacterial community in the compost. Functional potential analysis of the bacterial community using PICRUSt2 suggested that 4 (EC:3.4.21.80, EC:3.4.21.81, EC:3.4.21.82, and EC:3.4.24.77) out of 13 endopeptidase genes in S. griseus were largely absent in the compost bacterial community and that they play a key role in the hydrolysis of non-dissolved nitrogen. This is the first study to identify the enzymes that enhance the hydrolysis of shrimp pond sludge and to show that the thermophilic bacterial community involved in composting has a low ability to secrete these enzymes.
  2. Zainul Kamal S, Ngoc Minh Tran Q, Koyama M, Mimoto H, Asada C, Nakamura Y, et al.
    J Biosci Bioeng, 2022 Jan 31.
    PMID: 35115228 DOI: 10.1016/j.jbiosc.2022.01.004
    Hydrothermal treatment (HTT) as a pretreatment method for compost raw material has multiple benefits such as enhanced solubility of organic material, improved bioaugmentation, and reduced biohazard by killing harmful microorganisms. In this study, we pretreated food waste via HTT at 180 °C for 30 min to investigate its effect on food waste composting. HTT generated 8.98 mg/g-dry solid (g-ds) of 5-hydroxymethylfurfural and 4.32 mg/g-ds furfural. These furan compounds were completely decomposed in the early stage of composting, subsequently the organic matter in the food waste started to be degraded. The HTT-pretreated experiment demonstrated less organic matter degradation during composting as well as lower compost phytotoxicity compared to the non-HTT-pretreated experiment, where the conversion of carbon was 25.2% and the germination index value was 55%. HTT probably denatured part of the organic matter and making it more difficult to decompose, thereby preventing the rapid release of high concentrations of phytotoxic compounds such as organic acids and ammonium ions during composting. High-throughput microbial community analysis revealed that only Firmicutes appeared in the HTT-pretreated experiment, however, other bacterial groups also appeared in the non-HTT-pretreated experiment. This was possibly influenced by furan compounds and the changes of easily degradable organic matter to hardly degradable. Bacillus and Lysinibacillus were dominant in both composting experiments during vigorous organic matter degradation, suggesting that these bacterial groups were the main contributors to food waste composting. This study suggests that HTT is advantageous for the pretreatment of easily degradable food waste, as compost with less phytotoxicity was produced.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links