Displaying all 2 publications

Abstract:
Sort:
  1. Obata H, Khandaker MU, Furuta E, Nagatsu K, Zhang MR
    Appl Radiat Isot, 2018 Jul;137:250-260.
    PMID: 29679927 DOI: 10.1016/j.apradiso.2018.03.021
    We studied the excitation functions of residual radionuclides produced via proton and deuteron bombardment on natural iridium in the energy ranges of 30-15 MeV and 50-15 MeV, respectively. A conventional stacked-foil activation technique combined with HPGe γ-ray spectrometry was used to measure the excitation functions for 189, 191Pt and 189, 190g, 192g, 194gIr radionuclide production. Theoretical thick target yields were estimated to be 172 MBq/µA h and 192 MBq/µA h via the 193Ir(p,3n)191Pt reaction at 29.6-17.5 MeV and the 193Ir(d,4n)191Pt reaction at 40.3-23.8 MeV, respectively. The feasibility of 191Pt production from an iridium target was discussed, and compared with previously reported methods for the production of 191Pt.
  2. Khandaker MU, Nagatsu K, Minegishi K, Zhang MR, Jalilian AR, Bradley DA
    Appl Radiat Isot, 2020 Sep 15;166:109428.
    PMID: 32979754 DOI: 10.1016/j.apradiso.2020.109428
    186gRe (T1/2 = 3.7183 d, E(β-)mean = 346.7 keV, I(β-)mean = 92.59%), a mixed beta and γ-emitter shows great potential for use in theranostic applications. The dominant 185Re(n,γ) route, via use of a nuclear reactor, provides 186gRe in carrier added form with low specific activity, while cyclotrons offer no carrier-added (NCA) high specific activity production of 186gRe. However, to be able to select the best possible nuclear reaction and to optimize the production route via the use of a cyclotron, information on the excitation function for the reaction of interest as well as for the competing reactions is necessary. Accordingly, we have conducted a detailed study of the excitation functions for natW(d, x) reactions in seeking optimized parameters for the NCA production of 186gRe. Noting a discrepancy among the experimental data, we made an evaluation of the available literature, finally selecting optimum parameters for the production of 186gRe via the 186W(d,2n)186Re reaction. These beam parameters were then used for batch production of 186gRe by irradiating an enriched 186W metallic powder target, followed by a subsequent automated chemical separation process. The preliminary results show 98.1% radionuclidic purity of 186gRe at 8 h subsequent to the End of Bombardment (EOB), offering the potential for use in clinical applications.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links