Displaying all 8 publications

Abstract:
Sort:
  1. Wang J, Zhao T, Li B, Wei W
    Aging (Albany NY), 2023 Oct 13;15(20):11201-11216.
    PMID: 37844995 DOI: 10.18632/aging.205122
    Uveal melanoma (UVM) remains the leading intraocular malignancy in adults, with a poor prognosis for those with metastatic disease. Tryptophan metabolism plays a pivotal role in influencing cancerous properties and modifying the tumor's immune microenvironment. In this study, we explore the relationship between tryptophan metabolism-related gene (TRMG) expression and the various features of UVM, including prognosis and tumor microenvironment. Our analysis included 143 patient samples sourced from public databases. Using K-means clustering, we categorized UVM patients into two distinct clusters. Further, we developed a prognostic model based on five essential genes, effectively distinguishing between low-risk and high-risk patients. This distinction underscores the importance of TRMGs in UVM prognostication. Combining TRMG data with gender to create nomograms demonstrated exceptional accuracy in predicting UVM patient outcomes. Moreover, our analysis reveals correlations between risk assessments and immune cell infiltrations. Notably, the low-risk group displayed a heightened potential response to immune checkpoint inhibitors. In conclusion, our findings underscore the dynamic relationship between TRMG expression and various UVM characteristics, presenting a novel prognostic framework centered on TRMGs. The deep connection between TRMGs and UVM's tumor immune microenvironment emphasizes the crucial role of tryptophan metabolism in shaping the immune landscape. Such understanding paves the way for designing targeted immunotherapy strategies for UVM patients.
  2. Zhang YY, Fan LL, Zheng FY, Zhao T, Rong JD, Chen LG, et al.
    Mitochondrial DNA B Resour, 2020 Feb 06;5(1):306-307.
    PMID: 33366532 DOI: 10.1080/23802359.2019.1702484
    Gigantochloa verticillata is produced in Mengla and Jinghong, Yunnan Province, China, and cultivated in Hong Kong. Vietnam, Thailand, India, Indonesia, and Malaysia are distributed and cultivated. We determined the complete chloroplast genome sequence for G. verticillata using Illumina sequencing data. The complete chloroplast sequence is 139,489 bp, including large single-copy (LSC) region of 83,062 bp, small single-copy (SSC) region of 12,877 bp, and a pair of invert repeats (IR) regions of 21,775 bp. Plastid genome contain 132 genes, 85 protein-coding genes, 39 tRNA genes, and 8 rRNA genes. Phylogenetic analysis based on 23 chloroplast genomes indicates that G. verticillata is closely related to Dendrocalamus latiflorus in Bambusodae.
  3. Sun ZJ, Zhu W, Zhu WB, Zhao CL, Liao CL, Zou B, et al.
    Zool Res, 2021 Jul 18;42(4):412-416.
    PMID: 34075734 DOI: 10.24272/j.issn.2095-8137.2020.341
    Functional diversity is an integrative approach to better understand biodiversity across space and time. In the present study, we investigated the spatiotemporal patterns (i.e., elevation and season) and environmental determinants of anuran functional diversity on Tianping Mountain, northwest Hunan, China. Specifically, 10 transects were established from low (300 m a.s.l.) to high (1 492 m a.s.l.) elevations, and anuran communities were sampled in spring, early summer, midsummer, and autumn in 2017. Four functional diversity indices were computed for each transect in each season using ecomorphological functional traits. Our results demonstrated that these indices had contrasting responses to increasing elevations. However, they did not differ significantly among seasons in terms of temporal patterns. Interestingly, the unique spatiotemporal functional diversity patterns were impacted by distinct environmental variables, such as leaf litter cover, water temperature, number of trees, and water conductivity.
  4. Zhang H, Gao J, Ma Z, Liu Y, Wang G, Liu Q, et al.
    Front Cell Infect Microbiol, 2022;12:1082809.
    PMID: 36530420 DOI: 10.3389/fcimb.2022.1082809
    BACKGROUND: Wolbachia is gram-negative and common intracellular bacteria, which is maternally inherited endosymbionts and could expand their propagation in host populations by means of various manipulations. Recent reports reveal the natural infection of Wolbachia in Aedes Aegypti in Malaysia, India, Philippines, Thailand and the United States. At present, none of Wolbachia natural infection in Ae. aegypti has been reported in China.

    METHODS: A total of 480 Ae. aegypti adult mosquitoes were collected from October and November 2018 based on the results of previous investigations and the distribution of Ae. aegypti in Yunnan. Each individual sample was processed and screened for the presence of Wolbachia by PCR with wsp primers. Phylogenetic trees for the wsp gene was constructed using the neighbour-joining method with 1,000 bootstrap replicates, and the p-distance distribution model of molecular evolution was applied.

    RESULTS: 24 individual adult mosquito samples and 10 sample sites were positive for Wolbachia infection. The Wolbachia infection rate (IR) of each population ranged from 0 - 41.7%. The infection rate of group A alone was 0%-10%, the infection rate of group B alone was 0%-7.7%, and the infection rate of co-infection with A and B was 0-33.3%.

    CONCLUSIONS: Wolbachia infection in wild Ae. aegypti in China is the first report based on PCR amplification of the Wolbachia wsp gene. The Wolbachia infection is 5%, and the wAlbA and wAlbB strains were found to be prevalent in the natural population of Ae. aegypti in Yunnan Province.

  5. Zheng H, Qin J, Chen H, Hu H, Zhang X, Yang C, et al.
    Microb Genom, 2021 11;7(11).
    PMID: 34762026 DOI: 10.1099/mgen.0.000659
    Burkholderia pseudomallei is a Gram-negative soil-dwelling bacillus that causes melioidosis, a frequently fatal infectious disease, in tropical and subtropical regions. Previous studies have identified the overall genetic and evolutionary characteristics of B. pseudomallei on a global scale, including its origin and transmission routes. However, beyond its known hyperendemicity foci in northern Australia and Southeast Asia, the distribution and genetic characteristics of B. pseudomallei in most tropical regions remain poorly understood, including in southern China. Here, we sequenced the genomes of 122 B. pseudomallei strains collected from Hainan, an island in southern China, in 2002-2018, to investigate the population structure, relationships with global strains, local epidemiology, and virulence and antimicrobial-resistance factors. A phylogenetic analysis and hierarchical clustering divided the Hainan strains into nine phylogenic groups (PGs), 80 % of which were concentrated within five major groups (group 1: corresponding to minor sequence types [STs], 12.3 %; group 3: ST46 and ST50, 31.1 %; group 9: ST58, 13.1 %; group 11: ST55, 8.2 %; group 15: mainly ST658, 15.6%). A phylogenetic analysis that included global strains suggested that B. pseudomallei in Hainan originated from Southeast Asian countries, transmitted in multiple historical importation events. We also identified several mutual transmission events between Hainan and Southeast Asian countries in recent years, including three importation events from Thailand and Singapore to Hainan and three exportation events from Hainan to Singapore, Malaysia, and Taiwan island. A statistical analysis of the temporal distribution showed that the Hainan strains of groups 3, 9, and 15 have dominated the disease epidemic locally in the last 5 years. The spatial distribution of the Hainan strains demonstrated that some PGs are distributed in different cities on Hainan island, and by combining phylogenic and geographic distribution information, we detected 21 between-city transmission events, indicating its frequent local transmission. The detection of virulence factor genes showed that 56 % of the Hainan strains in group 1 encode a B. pseudomallei-specific adherence factor, boaB, confirming the specific pathogenic characteristics of the Hainan strains in group 1. An analysis of the antimicrobial-resistance potential of B. pseudomallei showed that various kinds of alterations were identified in clinically relevant antibiotic resistance factors, such as AmrR, PenA and PBP3, etc. Our results clarify the population structure, local epidemiology, and pathogenic characteristics of B. pseudomallei in Hainan, providing further insight into its regional and global transmission networks and improving our knowledge of its global phylogeography.
  6. Aad G, Abbott B, Abeling K, Abicht NJ, Abidi SH, Aboulhorma A, et al.
    Phys Rev Lett, 2024 Jan 12;132(2):021803.
    PMID: 38277607 DOI: 10.1103/PhysRevLett.132.021803
    The first evidence for the Higgs boson decay to a Z boson and a photon is presented, with a statistical significance of 3.4 standard deviations. The result is derived from a combined analysis of the searches performed by the ATLAS and CMS Collaborations with proton-proton collision datasets collected at the CERN Large Hadron Collider (LHC) from 2015 to 2018. These correspond to integrated luminosities of around 140  fb^{-1} for each experiment, at a center-of-mass energy of 13 TeV. The measured signal yield is 2.2±0.7 times the standard model prediction, and agrees with the theoretical expectation within 1.9 standard deviations.
  7. Hayrapetyan A, Tumasyan A, Adam W, Andrejkovic JW, Bergauer T, Chatterjee S, et al.
    Phys Rev Lett, 2024 Jun 28;132(26):261902.
    PMID: 38996325 DOI: 10.1103/PhysRevLett.132.261902
    A combination of fifteen top quark mass measurements performed by the ATLAS and CMS experiments at the LHC is presented. The datasets used correspond to an integrated luminosity of up to 5 and 20  fb^{-1} of proton-proton collisions at center-of-mass energies of 7 and 8 TeV, respectively. The combination includes measurements in top quark pair events that exploit both the semileptonic and hadronic decays of the top quark, and a measurement using events enriched in single top quark production via the electroweak t channel. The combination accounts for the correlations between measurements and achieves an improvement in the total uncertainty of 31% relative to the most precise input measurement. The result is m_{t}=172.52±0.14(stat)±0.30(syst)  GeV, with a total uncertainty of 0.33 GeV.
  8. Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S, et al.
    Autophagy, 2021 Jan;17(1):1-382.
    PMID: 33634751 DOI: 10.1080/15548627.2020.1797280
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links