Blood flow through a bifurcated artery with the presence of an overlapping stenosis located at parent’s arterial lumen under the action of a uniform external magnetic field is studied in this paper. Blood is treated as an electrically conducting fluid which exhibits the Magnetohydrodynamics principle and it is characterized by a Newtonian fluid model. The governing equations are discretized using a stabilization technique of finite element known as Galerkin least-squares. The maximum velocity and pressure drop evaluated in this present study are compared with the results found in previous literature and COMSOL Multiphysics. The solutions found in a satisfactory agreement, thus verify the source code is working properly. The effects of dimensionless parameters of Hartmann and Reynolds numbers in the fluid’s velocity and pressure are examined in details with further scientific discussions.
Numerical simulation of the behaviour of blood flow through a stenosed bifurcated
artery with the presence of single mild stenosis at parent artery is investigated. The
flow analysis applies the incompressible, steady, three-dimensional Navier-Stokes equations
for non-Newtonian generalized power law fluids. Behaviour of blood flow is simulated
numerically using COMSOL Multiphysicsthat based on finite element method.The
results showthe effect of severity of stenosis on flow characteristics such as axial velocity
and its exhibit flow recirculation zone for analysis on streamlines pattern.
Analyzed the effects of thermal radiation, chemical reaction, heat gener-
ation/absorption, magnetic and electric fields on unsteady flow and heat transfer of
nanofluid. The transport equations used passively controlled. A similarity solution is
employed to transformed the governing equations from partial differential equations to
a set of ordinary differential equations, and then solve using Keller box method. It was
found that the temperature is a decreasing function with the thermal stratification due to
the fact the density of the fluid in the lower vicinity is much higher compared to the upper
region, whereas the thermal radiation, viscous dissipation and heat generation enhanced
the nanofluid temperature and thermal layer thickness.