Displaying all 3 publications

Abstract:
Sort:
  1. Azman AS, Mawang CI, Khairat JE, AbuBakar S
    Int Microbiol, 2019 Dec;22(4):403-409.
    PMID: 30847714 DOI: 10.1007/s10123-019-00066-4
    A biofilm is a community of microorganisms attached to a surface and embedded in a matrix of extracellular polymeric substances. Biofilms confer resistance towards conventional antibiotic treatments; thus, there is an urgent need for newer and more effective antimicrobial agents that can act against these biofilms. Due to this situation, various studies have been done to investigate the anti-biofilm effects of natural products including bioactive compounds extracted from microorganisms such as Actinobacteria. This review provides an insight into the anti-biofilm potential of Actinobacteria against various pathogenic bacteria, which hopefully provides useful information, guidance, and improvements for future antimicrobial studies. Nevertheless, further research on the anti-biofilm mechanisms and compound modifications to produce more potent anti-biofilm effects are required.
    Matched MeSH terms: Actinobacteria/chemistry*
  2. AlMatar M, Eldeeb M, Makky EA, Köksal F, Var I, Kayar B
    Curr Microbiol, 2017 Jan;74(1):132-144.
    PMID: 27785553 DOI: 10.1007/s00284-016-1152-3
    Microbial-derived natural products have functional and structural diversity and complexity. For several decades, they have provided the basic foundation for most drugs available to modern medicine. Microbial-derived natural products have wide-ranging applications, especially as chemotherapeutics for various diseases and disorders. By exploring distinct microorganisms in different environments, small novel bioactive molecules with unique functionalities and biological or biomedical significance can be identified. Aquatic environments, such as oceans or seas, are considered to be sources of abundant novel bioactive compounds. Studies on marine microorganisms have revealed that several bioactive compounds extracted from marine algae and invertebrates are eventually generated by their associated bacteria. These findings have prompted intense research interest in discovering novel compounds from marine microorganisms. Natural products derived from Dermacoccus exhibit antibacterial, antitumor, antifungal, antioxidant, antiviral, antiparasitic, and eventually immunosuppressive bioactivities. In this review, we discussed the diversity of secondary metabolites generated by genus Dermacoccus with respect to their chemical structure, biological activity, and origin. This brief review highlights and showcases the pivotal importance of Dermacoccus-derived natural products and sheds light on the potential venues of discovery of new bioactive compounds from marine microorganisms.
    Matched MeSH terms: Actinobacteria/chemistry*
  3. Carlsohn MR, Groth I, Tan GYA, Schütze B, Saluz HP, Munder T, et al.
    Int J Syst Evol Microbiol, 2007 Jul;57(Pt 7):1640-1646.
    PMID: 17625209 DOI: 10.1099/ijs.0.64903-0
    Three actinomycetes isolated from the surfaces of rocks in a medieval slate mine were examined in a polyphasic taxonomic study. Chemotaxonomic and morphological characteristics of the isolates were typical of strains of the genus Amycolatopsis. The isolates had identical 16S rRNA gene sequences and formed a distinct phyletic line towards the periphery of the Amycolatopsis mediterranei clade, being most closely related to Amycolatopsis rifamycinica. The organisms shared a wide range of genotypic and phenotypic markers that distinguished them from their closest phylogenetic neighbours. On the basis of these results, a novel species, Amycolatopsis saalfeldensis sp. nov., is proposed. The type strain is HKI 0457(T) (=DSM 44993(T)=NRRL B-24474(T)).
    Matched MeSH terms: Actinobacteria/chemistry
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links