Displaying all 4 publications

Abstract:
Sort:
  1. Kalavathy R, Abdullah N, Jalaludin S, Ho YW
    Br Poult Sci, 2003 Mar;44(1):139-44.
    PMID: 12737236
    1. The effects of a mixture of 12 Lactobacillus strains (LC) on the growth performance, abdominal fat deposition, serum lipids and weight of organs of broiler chickens were studied from 1 to 42 d of age. 2. One hundred and thirty-six 1-d-old male broiler chicks were assigned at random to two dietary treatments: a basal diet (control), and a basal diet with 0.1% LC. 3. The supplementation of LC in broiler diets improved the body weight gain and feed conversion rate from 1 to 42 d of age and was effective in reducing abdominal fat deposition but only after 28 d of age. 4. The LC diets reduced serum total cholesterol, low density lipoprotein (LDL) cholesterol and triglycerides in broilers from 21 to 42 d of age. However, there was no significant difference in serum high density lipoprotein (HDL) cholesterol between control and LC-fed broilers. There was also no significant difference in the weights of organs of control and LC-fed broilers. 5. The results indicated that the mixture of 12 Lactobacillus strains have a hypolipidaemic effect on broilers.
    Matched MeSH terms: Adipose Tissue/growth & development*
  2. Vohra MS, Ahmad B, Serpell CJ, Parhar IS, Wong EH
    Differentiation, 2020 08 23;115:62-84.
    PMID: 32891960 DOI: 10.1016/j.diff.2020.08.003
    Adipogenesis has been extensively studied using in vitro models of cellular differentiation, enabling long-term regulation of fat cell metabolism in human adipose tissue (AT) material. Many studies promote the idea that manipulation of this process could potentially reduce the prevalence of obesity and its related diseases. It has now become essential to understand the molecular basis of fat cell development to tackle this pandemic disease, by identifying therapeutic targets and new biomarkers. This review explores murine cell models and their applications for study of the adipogenic differentiation process in vitro. We focus on the benefits and limitations of different cell line models to aid in interpreting data and selecting a good cell line model for successful understanding of adipose biology.
    Matched MeSH terms: Adipose Tissue/growth & development*
  3. Dugdale AE, Chen ST, Hewitt G
    Am J Clin Nutr, 1970 Oct;23(10):1280-7.
    PMID: 5475659
    Matched MeSH terms: Adipose Tissue/growth & development
  4. Gouk SW, Cheng SF, Mok JS, Ong AS, Chuah CH
    Br J Nutr, 2013 Dec 14;110(11):1987-95.
    PMID: 23756564 DOI: 10.1017/S0007114513001475
    The present study aimed to determine the effect of positional distribution of long-chain SFA in TAG, especially at the sn-1, 3 positions, on fat deposition using the C57BL/6 mouse model. Throughout the 15 weeks of the study, mice were fed with diets fortified with palm olein (POo), chemically interesterified POo (IPOo) and soyabean oil (SOY). Mice receiving the SOY-enriched diet gained significantly higher amounts of subcutaneous fat (P= 0·011) and total fat (P= 0·013) compared with the POo group, despite similar body mass gain being recorded. During normalisation with food consumption to obtain the fat:feed ratio, mice fed with the POo-enriched diet exhibited significantly lower visceral (P= 0·044), subcutaneous (P= 0·006) and total (P= 0·003) fat:feed than those fed with the SOY-enriched diet. It is noteworthy that mice fed with the IPOo-enriched diet gained 14·3 % more fat per food consumed when compared with the POo group (P= 0·013), despite their identical total fatty acid compositions. This was mainly attributed to the higher content of long-chain SFA at the sn-1, 3 positions of TAG in POo, which results in delayed absorption after deacylation as evidenced by the higher amounts of long-chain SFA excreted in the faeces of mice fed with the POo-enriched diet. Negative correlations were found between the subcutaneous, visceral as well as total fat accretion per food consumption and the total SFA content at the sn-1, 3 positions, while no relationships were found for MUFA and PUFA. The present results show that the positional distribution of long-chain SFA exerts a more profound effect on body fat accretion than the total SFA content.
    Matched MeSH terms: Adipose Tissue/growth & development
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links