METHODS: Seventeen patients with alcohol dependence admitted for de-addiction treatment and 12 healthy controls were enrolled in the study. Blood samples were collected at baseline, after one-week, and after one-month, and CD200 levels were measured using enzyme-linked immunosorbent assay kit and compared with the healthy controls.
RESULTS: The serum level of the neuroimmune regulatory protein CD200 in alcohol dependent group (at baseline) was significantly lower compared to healthy controls (p=0.003), and increased after one-week, and one-month period.
CONCLUSION: The present study indicates that decrease of CD200 serum levels in alcohol dependent patients and its rise during alcohol withdrawal and abstinence may provide a preliminary evidence of the role of neuroimmune regulatory proteins in neuroadaptation during alcohol withdrawal.
METHODS: A cross sectional study was conducted on three groups: individuals with alcohol use disorders (n=30), social drinkers (n=54) and alcohol-naive controls (n=60). 1H NMR-based metabolomics was used to obtain the metabolic profiles of plasma samples. Data were processed by multivariate principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) followed by univariate and multivariate logistic regressions to produce the best fit-model for discrimination between groups.
RESULTS: The OPLS-DA model was able to distinguish between the AUD group and the other groups with high sensitivity, specificity and accuracy of 64.29%, 98.17% and 91.24% respectively. The logistic regression model identified two biomarkers in plasma (propionic acid and acetic acid) as being significantly associated with alcohol use disorders. The reproducibility of all biomarkers was excellent (0.81-1.0).
CONCLUSIONS: The applied plasma metabolomics technique was able to differentiate the metabolites between AUD and the other groups. These metabolites are potential novel biomarkers for diagnosis of alcohol use disorders.