Displaying all 3 publications

Abstract:
Sort:
  1. Lee PM, Lee KH, Siaw YS
    J Chem Technol Biotechnol, 1993;58(1):65-70.
    PMID: 7763937
    Aminoacylase I (EC. 3.5.1.14) was immobilized by covalent crosslinking to alginate molecules with 1-ethyl-3-(3-dimethyl-aminopropyl)-carbodiimide HCl followed by calcium alginate bead formation for the production of L-phenylalanine from the racemic mixtures of N-acetyl-DL-phenylalanine. Different concentrations of the coupling reagent were tested and the coupling process was optimized. The immobilized and the partially purified aminoacylase were characterized in terms of the activity, operational stability, thermal stability, pH and temperature optima and kinetic constants, Km and Vmax. The activity of the enzyme covalently immobilized in calcium alginate beads was enhanced by about 75% compared to that of free enzyme. The beads showed stable activity under operational conditions, they lost about 40% of their activity after four reaction cycles. The immobilized aminoacylase was more stable over a broader pH range. Thus this simple method provides irreversible immobilization of aminoacylase to give a biocatalyst with good operational stability and enhanced activity.
    Matched MeSH terms: Amidohydrolases/isolation & purification
  2. Lee KH, Lee PM, Siaw YS
    J Chem Technol Biotechnol, 1993;57(1):27-32.
    PMID: 7763683
    Aminoacylase I (EC 3.5.1.14) encapsulated in calcium alginate beads stabilized with poly-L-lysine was used for the production of L-phenylalanine by the hydrolysis of a racemic mixture of N-acetyl-DL-phenylalanine. The immobilized aminoacylase was studied with respect to operational stability, thermal stability, effects of pH and temperature and kinetic constants. The leakage of enzyme from the stabilized beads was eliminated. The immobilized enzyme retained high biological activity. The Km and Vmax values for the stabilized beads were 11.11 mmol dm-3 and 0.076 mumol min-1 respectively. The optimum pH and temperature for the hydrolysis were 6.5 and 55 degrees C respectively. Scanning electron micrographs revealed crosslinked structures on the surface of the beads. The operational performances of the beads in a batch reaction and a packed-bed bioreactor for continuous reaction were investigated. With batch reaction, only about 5% of enzyme activity was lost within ten reaction cycles and there was no significant loss of activity over 600 h of continuous operation after equilibrium was reached, and a conversion yield of about 80% was obtained.
    Matched MeSH terms: Amidohydrolases/isolation & purification*
  3. Tan NH
    PMID: 19770070 DOI: 10.1016/j.cbpc.2009.09.002
    A thrombin-like enzyme, purpurase, was purified from the Cryptelytrops purpureomaculatus (mangrove pit viper) venom using high performance ion-exchange and gel filtration chromatography. The purified sample (termed purpurase) yielded a homogeneous band in SDS-polyacrylamide gel electrophoresis with a molecular weight of 35,000. The N-terminal sequence of purpurase was determined to be VVGGDECNINDHRSLVRIF and is homologous to many other venom thrombin-like enzymes. Purpurase exhibits both arginine ester hydrolase and amidase activities. Kinetic studies using tripeptide chromogenic anilide substrates showed that purpurase is not fastidious towards its substrate. The clotting times of fibrinogen by purpurase were concentration dependent, with optimum clotting activity at 3mg fibronogen/mL. The clotting activity by purpurase was in the following decreasing order: cat fibrinogen>human fibrinogen>dog fibrinogen>goat fibrinogen>rabbit fibrinogen. Reversed-phase HPLC analysis of the products of action of purpurase on bovine fibrinogen showed that only fibrinopeptide A was released. Indirect ELISA studies showed that anti-purpurase cross-reacted strongly with venoms of most crotalid venoms, indicating the snake venom thrombin-like enzymes generally possess similar epitopes. In the more specific double-sandwich ELISA, however, anti-purpurase cross-reacted only with venoms of certain species of the Trimeresurus complex, and the results support the recent proposed taxonomy changes concerning the Trimeresurus complex.
    Matched MeSH terms: Amidohydrolases/isolation & purification*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links