Displaying all 3 publications

Abstract:
Sort:
  1. Venkatesh G, Majid MI, Ramanathan S, Mansor SM, Nair NK, Croft SL, et al.
    Biomed Chromatogr, 2008 May;22(5):535-41.
    PMID: 18205140 DOI: 10.1002/bmc.965
    A simple, sensitive and specific reversed-phase high-performance liquid chromatographic method with UV detection at 251 nm was developed for quantitation of buparvaquone (BPQ) in human and rabbit plasma. The method utilizes 250 microL of plasma and sample preparation involves protein precipitation followed by solid-phase extraction. The method was validated on a C18 column with mobile phase consisting of ammonium acetate buffer (0.02 m, pH 3.0) and acetonitrile in the ratio of 18:82 (v/v) at a flow rate of 1.1 mL/min. The calibration curves were linear (correlation coefficient>or=0.998) in the selected range. The method is specific and sensitive with limit of quantitation of 50 ng/mL for BPQ. The validated method was found to be accurate and precise in the working calibration range. Stability studies were carried out at different storage conditions and BPQ was found to be stable. Partial validation studies were carried out using rabbit plasma and intra- and inter-day precision and accuracy were within 7%. This method is simple, reliable and can be routinely used for preclinical pharmacokinetic studies for BPQ.
    Matched MeSH terms: Antiprotozoal Agents/pharmacokinetics
  2. Chew WK, Segarra I, Ambu S, Mak JW
    Antimicrob Agents Chemother, 2012 Apr;56(4):1762-8.
    PMID: 22271863 DOI: 10.1128/AAC.05183-11
    Toxoplasma gondii is a parasite that generates latent cysts in the brain; reactivation of these cysts may lead to fatal toxoplasmic encephalitis, for which treatment remains unsuccessful. We assessed spiramycin pharmacokinetics coadministered with metronidazole, the eradication of brain cysts and the in vitro reactivation. Male BALB/c mice were fed 1,000 tachyzoites orally to develop chronic toxoplasmosis. Four weeks later, infected mice underwent different treatments: (i) infected untreated mice (n = 9), which received vehicle only; (ii) a spiramycin-only group (n = 9), 400 mg/kg daily for 7 days; (iii) a metronidazole-only group (n = 9), 500 mg/kg daily for 7 days; and (iv) a combination group (n = 9), which received both spiramycin (400 mg/kg) and metronidazole (500 mg/kg) daily for 7 days. An uninfected control group (n = 10) was administered vehicle only. After treatment, the brain cysts were counted, brain homogenates were cultured in confluent Vero cells, and cysts and tachyzoites were counted after 1 week. Separately, pharmacokinetic profiles (plasma and brain) were assessed after a single dose of spiramycin (400 mg/kg), metronidazole (500 mg/kg), or both. Metronidazole treatment increased the brain spiramycin area under the concentration-time curve from 0 h to ∞ (AUC(0-∞)) by 67% without affecting its plasma disposition. Metronidazole plasma and brain AUC(0-∞) values were reduced 9 and 62%, respectively, after spiramycin coadministration. Enhanced spiramycin brain exposure after coadministration reduced brain cysts 15-fold (79 ± 23 for the combination treatment versus 1,198 ± 153 for the untreated control group [P < 0.05]) and 10-fold versus the spiramycin-only group (768 ± 125). Metronidazole alone showed no effect (1,028 ± 149). Tachyzoites were absent in the brain. Spiramycin reduced in vitro reactivation. Metronidazole increased spiramycin brain penetration, causing a significant reduction of T. gondii brain cysts, with potential clinical translatability for chronic toxoplasmosis treatment.
    Matched MeSH terms: Antiprotozoal Agents/pharmacokinetics
  3. Venkatesh G, Ramanathan S, Mansor SM, Nair NK, Sattar MA, Croft SL, et al.
    J Pharm Biomed Anal, 2007 Mar 12;43(4):1546-51.
    PMID: 17157469
    A simple, sensitive and specific reversed phase high performance liquid chromatographic (RP-HPLC) method with UV detection at 251 nm was developed for simultaneous quantitation of buparvaquone (BPQ), atenolol, propranolol, quinidine and verapamil. The method was applicable in rat in situ intestinal permeability study to assess intestinal permeability of BPQ, a promising lead compound for Leishmania donovani infections. The method was validated on a C-4 column with mobile phase comprising ammonium acetate buffer (0.02 M, pH 3.5) and acetonitrile in the ratio of 30:70 (v/v) at a flow rate of 1.0 ml/min. The retention times for atenolol, quinidine, propranolol, verapamil and BPQ were 4.30, 5.96, 6.55, 7.98 and 8.54 min, respectively. The calibration curves were linear (correlation coefficient > or =0.996) in the selected range of each analyte. The method is specific and sensitive with limit of quantitation of 15 microg/ml for atenolol, 0.8 microg/ml for quinidine, 5 microg/ml for propranolol, 10 microg/ml for verapamil and 200 ng/ml for BPQ. The validated method was found to be accurate and precise in the working calibration range. Stability studies were carried out at different storage conditions and all the analytes were found to be stable. This method is simple, reliable and can be routinely used for accurate permeability characterization.
    Matched MeSH terms: Antiprotozoal Agents/pharmacokinetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links