Tropomyosin and arginine kinase have been identified as the major allergens in multiple species of crab. Charybdis feriatus is an important commercial crab in this country.
Crab is an important source of food allergen. Tropomyosin represents the main crab allergen and is responsible for IgE cross-reactivity between various species of crustaceans. Recently, other new crab allergens including arginine kinase have been identified. However, information on allergens of the local Portunidcrab is not available. Thus, the aim of this study was to identify the major allergens of Portunus pelagicus (blue swimming crab) using the allergenomics approach. Raw and cooked extracts of the crab were prepared from the crab meat. Protein profile and IgE binding pattern were demonstrated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting using sera from 30 patients with crab allergy. The major allergens of the crab were then identified by two-dimensional electrophoresis (2-DE), followed by mass spectrometry analysis of the peptide digests. The SDS-PAGE of raw extract revealed approximately 20 protein fractions over a wide molecular weight range, while cooked extract demonstrated fewer protein bands. The raw extract also demonstrated a higher number of IgE reactive bands than the cooked extract. A heat-resistant protein of 36 kDa has been identified as the major allergen in both raw and cooked extracts. In addition, a heat-sensitive protein of 41 kDa was also recognized as a major allergen in raw crab. The 2-DE gel profile of the raw extract demonstrated about >100 distinct proteins spots and immunoblotting of the 2-DE profile demonstrated at least 12 different major IgE reactive spots with molecular masses between 13 to 250 kDa and isoelectric point (pI) values ranging from 4.0 to 7.0. The 36 and 41 kDa proteins were identified as the crab tropomyosin and arginine kinase, respectively by mass spectrometry. Therefore, this study confirmed that tropomyosin and arginine kinase are the major allergens of the local Portunid crab, P. pelagicus.
The purpose of this study was to evaluate the effect of different cooking methods on the allergenicity of cockle and to identify proteins most frequently bound by IgE antibodies using a proteomics approach. Raw, boiled, fried and roasted extracts of the cockle were prepared. The protein profiles of the extracts were obtained by separation using sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and 2-dimensional gel electrophoresis (2-DE). IgE-immunoblotting was then performed with the use of individual sera from patients with cockle allergy and the major IgE-binding proteins were analyzed by mass-spectrometry. SDS-PAGE of raw extract showed 13 protein bands. Smaller numbers of protein bands were detected in the boiled, fried and roasted extracts. The 2-DE gel profile of the raw extract further separated the protein bands to ~50 protein spots with molecular masses between 13 to 180 kDa and isoelectric point (pI) values ranging from 3 to 10. Immunoblotting of raw extract exhibited 11 IgE-binding proteins with two proteins of 36 and 40 kDa as the major IgE-binding proteins, while the boiled extract revealed 3 IgE-binding proteins. Fried and roasted extracts only showed a single IgE-binding protein at 36 kDa. 2-DE immunoblotting of raw extract demonstrated 5 to 20 IgE reactive spots. Mass spectrometry analysis led to identification of 2 important allergens, tropomyosin (36 kDa) and arginine kinase (40 kDa). Heated extracts showed a reduction in the number of IgE-reactive bands compared with raw extract, which suggest that thermal treatment can be used as a tool in attempting to reduce cockle allergenicity. The degree of allergenicity of cockle was demonstrated in the order raw > boiled > fried ≈ roasted. Two important allergens reacting with more than 50% of patients' sera identified using mass spectrometric approaches were tropomyosin and arginine kinase. Thus, allergens found in this study would help in component based diagnosis, management of cockle allergic patients and to the standardisation of allergenic test products as tools in molecular allergology.