Displaying 1 publication

Abstract:
Sort:
  1. Wang L, Qi Y, Cao L, Song L, Hu R, Li Q, et al.
    Environ Pollut, 2024 Dec 15;363(Pt 2):125228.
    PMID: 39486677 DOI: 10.1016/j.envpol.2024.125228
    Since the increasing number of polybutylene adipate terephthalate (PBAT)-based plastics entering the environment, the search for sustainable treatment methods has become a primary focus of contemporary research. Composting offers a novel approach for managing biodegradable plastics. However, a significant challenge in the composting process is how to control nitrogen loss and enhance plastic degradation. In this context, the effect of various additives on nitrogen retention, PBAT plastics degradation, and microbial community dynamics during composting was investigated. The findings revealed that the addition of nitrogen-fixing bacteria Azotobacter vinelandii and biochar (AzBC) significantly improved nitrogen retention and accelerated PBAT rupture within 40 days of composting. Specifically, the PBAT degradation rate in the AzBC group reached 29.6%, which increased by 12.14% (P vinelandii offers promising sustainable prospects for enhancing PBAT plastic degradation and reducing nitrogen loss during composting.
    Matched MeSH terms: Azotobacter vinelandii/metabolism
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links