Cold-active enzymes have recently gained popularity because of their high activity at lower temperatures than their mesophilic and thermophilic counterparts, enabling them to withstand harsh reaction conditions and enhance industrial processes. Cold-active lipases are enzymes produced by psychrophiles that live and thrive in extremely cold conditions. Cold-active lipase applications are now growing in the detergency, synthesis of fine chemicals, food processing, bioremediation, and pharmaceutical industries. The cold adaptation mechanisms exhibited by these enzymes are yet to be fully understood. Using phylogenetic analysis, and advanced deep learning-based protein structure prediction tool Alphafold2, we identified an evolutionary processes in which a conserved cold-active-like motif is presence in a distinct subclade of the tree and further predicted and simulated the three-dimensional structure of a putative cold-active lipase with the cold active motif, Glalip03, from Glaciozyma antarctica PI12. Molecular dynamics at low temperatures have revealed global stability over a wide range of temperatures, flexibility, and the ability to cope with changes in water and solvent entropy. Therefore, the knowledge we uncover here will be crucial for future research into how these low-temperature-adapted enzymes maintain their overall flexibility and function at lower temperatures.
Here, we present a novel psychrophilic β-glucanase from Glaciozyma antarctica PI12 yeast that has been structurally modeled and analyzed in detail. To our knowledge, this is the first attempt to model a psychrophilic laminarinase from yeast. Because of the low sequence identity (<40%), a threading method was applied to predict a 3D structure of the enzyme using the MODELLER9v12 program. The results of a comparative study using other mesophilic, thermophilic, and hyperthermophilic laminarinases indicated several amino acid substitutions on the surface of psychrophilic laminarinase that totally increased the flexibility of its structure for efficient catalytic reactions at low temperatures. Whereas several structural factors in the overall structure can explain the weak thermal stability, this research suggests that the psychrophilic adaptation and catalytic activity at low temperatures were achieved through existence of longer loops and shorter or broken helices and strands, an increase in the number of aromatic and hydrophobic residues, a reduction in the number of hydrogen bonds and salt bridges, a higher total solvent accessible surface area, and an increase in the exposure of the hydrophobic side chains to the solvent. The results of comparative molecular dynamics simulation and principal component analysis confirmed the above strategies adopted by psychrophilic laminarinase to increase its catalytic efficiency and structural flexibility to be active at cold temperature.
The structure of a novel psychrophilic β-mannanase enzyme from Glaciozyma antarctica PI12 yeast has been modelled and analysed in detail. To our knowledge, this is the first attempt to model a psychrophilic β-mannanase from yeast. To this end, a 3D structure of the enzyme was first predicted using a threading method because of the low sequence identity (<30%) using MODELLER9v12 and simulated using GROMACS at varying low temperatures for structure refinement. Comparisons with mesophilic and thermophilic mannanases revealed that the psychrophilic mannanase contains longer loops and shorter helices, increases in the number of aromatic and hydrophobic residues, reductions in the number of hydrogen bonds and salt bridges and numerous amino acid substitutions on the surface that increased the flexibility and its efficiency for catalytic reactions at low temperatures.
The structure of psychrophilic chitinase (CHI II) from Glaciozyma antarctica PI12 has yet to be studied in detail. Due to its low sequence identity (<30 %), the structural prediction of CHI II is a challenge. A 3D model of CHI II was built by first using a threading approach to search for a suitable template and to generate an optimum target-template alignment, followed by model building using MODELLER9v7. Analysis of the catalytic insertion domain structure in CHI II revealed an increase in the number of aromatic residues and longer loops compared to mesophilic and thermophilic chitinases. A molecular dynamics simulation was used to examine the stability of the CHI II structure at 273, 288 and 300 K. Structural analysis of the substrate-binding cleft revealed a few exposed aromatic residues. Substitutions of certain amino acids in the surface and loop regions of CHI II conferred an increased flexibility to the enzyme, allowing for an adaptation to cold temperatures. A substrate binding comparison of CHI II with the mesophilic chitinase from Coccidioides immitis, 1D2K, suggested that the psychrophilic adaptation and catalytic activity at low temperatures were achieved through a reduction in the number of salt bridges, fewer hydrogen bonds and an increase in the exposure of the hydrophobic side chains to the solvent.
The feasible use of aqueous two-phase systems (ATPSs) to establish a viable protocol for the recovery of laccase from processed Hericium erinaceus (Bull.:Fr.) Pers. fruiting bodies was evaluated. Cold-stored (4.00±1.00°C) H. erinaceus recorded the highest laccase activities of 2.02±0.04 U/mL among all the processed techniques. The evaluation was carried out in twenty-five ATPSs, which composed of polyethylene glycol (PEG) with various molecular weights and potassium phosphate salt solution to purify the protein from H. erinaceus. Optimum recovery condition was observed in the ATPS which contained 17% (w/w) PEG with a molecular weight of 8000 and 12.2% (w/w) potassium phosphate solution, at a volume ratio (VR) of 1.0. The use of ATPS resulted in one-single primary recovery stage process that produced an overall yield of 99% with a purification factor of 8.03±0.46. The molecular mass of laccases purified from the bottom phase was in the range of 55-66 kDa. The purity of the partitioned laccase was confirmed with sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE).
We report a detailed structural analysis of the psychrophilic exo-β-1,3-glucanase (GaExg55) from Glaciozyma antarctica PI12. This study elucidates the structural basis of exo-1,3-β-1,3-glucanase from this psychrophilic yeast. The structural prediction of GaExg55 remains a challenge because of its low sequence identity (37 %). A 3D model was constructed for GaExg55. Threading approach was employed to determine a suitable template and generate optimal target-template alignment for establishing the model using MODELLER9v15. The primary sequence analysis of GaExg55 with other mesophilic exo-1,3-β-glucanases indicated that an increased flexibility conferred to the enzyme by a set of amino acids substitutions in the surface and loop regions of GaExg55, thereby facilitating its structure to cold adaptation. A comparison of GaExg55 with other mesophilic exo-β-1,3-glucanases proposed that the catalytic activity and structural flexibility at cold environment were attained through a reduced amount of hydrogen bonds and salt bridges, as well as an increased exposure of the hydrophobic side chains to the solvent. A molecular dynamics simulation was also performed using GROMACS software to evaluate the stability of the GaExg55 structure at varying low temperatures. The simulation result confirmed the above findings for cold adaptation of the psychrophilic GaExg55. Furthermore, the structural analysis of GaExg55 with large catalytic cleft and wide active site pocket confirmed the high activity of GaExg55 to hydrolyze polysaccharide substrates.
Cold-adapted enzymes are proteins produced by psychrophilic organisms that display a high catalytic efficiency at extremely low temperatures. Chitin consists of the insoluble homopolysaccharide β-(1, 4)-linked N-acetylglucosamine, which is the second most abundant biopolymer found in nature. Chitinases (EC 3.2.1.14) play an important role in chitin recycling in nature. Biodegradation of chitin by the action of cold-adapted chitinases offers significant advantages in industrial applications such as the treatment of chitin-rich waste at low temperatures, the biocontrol of phytopathogens in cold environments and the biocontrol of microbial spoilage of refrigerated food.
A novel α-amylase was isolated successfully from Glaciozyma antarctica PI12 using DNA walking and reverse transcription-polymerase chain reaction (RT-PCR) methods. The structure of this psychrophilic α-amylase (AmyPI12) from G. antarctica PI12 has yet to be studied in detail. A 3D model of AmyPI12 was built using a homology modelling approach to search for a suitable template and to generate an optimum target-template alignment, followed by model building using MODELLER9.9. Analysis of the AmyPI12 model revealed the presence of binding sites for a conserved calcium ion (CaI), non-conserved calcium ions (CaII and CaIII) and a sodium ion (Na). Compared with its template-the thermostable α-amylase from Bacillus stearothermophilus (BSTA)-the binding of CaII, CaIII and Na ions in AmyPI12 was observed to be looser, which suggests that the low stability of AmyPI12 allows the protein to work at different temperature scales. The AmyPI12 amino acid sequence and model were compared with thermophilic α-amylases from Bacillus species that provided the highest structural similarities with AmyPI12. These comparative studies will enable identification of possible determinants of cold adaptation.