Displaying all 5 publications

Abstract:
Sort:
  1. Ewe JA, Wan Abdullah WN, Bhat R, Karim AA, Liong MT
    Ultrason Sonochem, 2012 Jan;19(1):160-73.
    PMID: 21775184 DOI: 10.1016/j.ultsonch.2011.06.013
    This study aimed at utilizing ultrasound treatment to further enhance the growth of lactobacilli and their isoflavone bioconversion activities in biotin-supplemented soymilk. Strains of lactobacilli (Lactobacillus acidophilus BT 1088, L. fermentum BT 8219, L. acidophilus FTDC 8633, L. gasseri FTDC 8131) were treated with ultrasound (30 kHz, 100 W) at different amplitudes (20%, 60% and 100%) for 60, 120 and 180 s prior to inoculation and fermentation in biotin-soymilk. The treatment affected the fatty acids chain of the cellular membrane lipid bilayer, as shown by an increased lipid peroxidation (P<0.05). This led to increased membrane fluidity and subsequently, membrane permeability (P<0.05). The permeabilized cellular membranes had facilitated nutrient internalization and subsequent growth enhancement (P<0.05). Higher amplitudes and longer durations of the treatment promoted growth of lactobacilli in soymilk, with viable counts exceeding 9 log CFU/mL. The intracellular and extracellular β-glucosidase specific activities of lactobacilli were also enhanced (P<0.05) upon ultrasound treatment, leading to increased bioconversion of isoflavones in soymilk, particularly genistin and malonyl genistin to genistein. Results from this study show that ultrasound treatment on lactobacilli cells promotes (P<0.05) the β-glucosidase activity of cells for the benefit of enhanced (P<0.05) isoflavone glucosides bioconversion to bioactive aglycones in soymilk.
    Matched MeSH terms: Biotin/metabolism*
  2. Ewe JA, Wan-Abdullah WN, Alias AK, Liong MT
    J Microbiol Biotechnol, 2012 Jul;22(7):947-59.
    PMID: 22580314
    This study was aimed at an evaluation of the potential inheritance of electroporation effects on Lactobacillus fermentum BT 8219 through to three subsequent subcultures, based on their growth, isoflavone bioconversion activities, and probiotic properties, in biotin-supplemented soymilk. Electroporation was seen to cause cell death immediately after treatment, followed by higher growth than the control during fermentation in biotin-soymilk (P<0.05). This was associated with enhanced intracellular and extracellular beta-glucosidase specific activity, leading to increased bioconversion of isoflavone glucosides to aglycones (P<0.05). The growing characteristics, enzyme, and isoflavone bioconversion activities of the first, second, and third subcultures of treated cells in biotin-soymilk were similar to the control (P>0.05). Electroporation affected the probiotic properties of parent L. fermentum BT 8219, by reducing its tolerance towards acid (pH 2) and bile, lowering its inhibitory activities against selected pathogens, and reducing its ability for adhesion, when compared with the control (P<0.05). The first, second, and third subcultures of the treated cells showed comparable traits with that of the control (P>0.05), with the exception of their bile tolerance ability, which was inherited to the treated cells of the first and second subcultures (P<0.05). Our results suggest that electroporation could be used to increase the bioactivity of biotin-soymilk via fermentation with probiotic L. fermentum BT 8219, with a view towards the development of functional foods.
    Matched MeSH terms: Biotin/metabolism
  3. Chen PW, Cui ZY, Ng HS, Chi-Wei Lan J
    J Biosci Bioeng, 2020 Aug;130(2):195-199.
    PMID: 32370929 DOI: 10.1016/j.jbiosc.2020.03.011
    Ectoine production using inexpensive and renewable biomass resources has attracted great interest among the researchers due to the low yields of ectoine in current fermentation approaches that complicate the large-scale production of ectoine. In this study, ectoine was produced from corn steep liquor (CSL) and soybean hydrolysate (SH) in replacement to yeast extract as the nitrogen sources for the fermentation process. To enhance the bacterial growth and ectoine production, biotin was added to the Halomonas salina fermentation media. In addition, the effects addition of surfactants such as Tween 80 and saponin on the ectoine production were also investigated. Results showed that both the CSL and SH can be used as the nitrogen source substitutes in the fermentation media. Higher amount of ectoine (1781.9 mg L-1) was produced in shake flask culture with SH-containing media as compared to CSL-containing media. A total of 2537.0 mg L-1 of ectoine was produced at pH 7 when SH-containing media was applied in the 2 L batch fermentation. Moreover, highest amount of ectoine (1802.0 mg L-1) was recorded in the SH-containing shake flask culture with addition of 0.2 μm mL-1 biotin. This study demonstrated the efficacy of industrial waste as the nutrient supplement for the fermentation of ectoine production.
    Matched MeSH terms: Biotin/metabolism
  4. Marimuthu C, Tang TH, Tominaga J, Tan SC, Gopinath SC
    Analyst, 2012 Mar 21;137(6):1307-15.
    PMID: 22314701 DOI: 10.1039/c2an15905h
    The discovery that synthetic short chain nucleic acids are capable of selective binding to biological targets has made them to be widely used as molecular recognition elements. These nucleic acids, called aptamers, are comprised of two types, DNA and RNA aptamers, where the DNA aptamer is preferred over the latter due to its stability, making it widely used in a number of applications. However, the success of the DNA selection process through Systematic Evolution of Ligands by Exponential Enrichment (SELEX) experiments is very much dependent on its most critical step, which is the conversion of the dsDNA to ssDNA. There is a plethora of methods available in generating ssDNA from the corresponding dsDNA. These include asymmetric PCR, biotin-streptavidin separation, lambda exonuclease digestion and size separation on denaturing-urea PAGE. Herein, different methods of ssDNA generation following the PCR amplification step in SELEX are reviewed.
    Matched MeSH terms: Biotin/metabolism
  5. Ewe JA, Wan-Abdullah WN, Alias AK, Liong MT
    Int J Food Sci Nutr, 2012 Aug;63(5):580-96.
    PMID: 22149599 DOI: 10.3109/09637486.2011.641940
    This study aimed at utilizing electroporation to further enhance the growth of lactobacilli and their isoflavone bioconversion activities in biotin-supplemented soymilk. Strains of lactobacilli were treated with different pulsed electric field strength (2.5, 5.0 and 7.5 kV/cm) for 3, 3.5 and 4 ms prior to inoculation and fermentation in biotin-soymilk at 37°C for 24 h. Electroporation triggered structural changes within the cellular membrane of lactobacilli that caused lipid peroxidation (p 9 log CFU/ml after fermentation in biotin-soymilk (p biotin-soymilk (p biotin-soymilk with increased bioactive aglycones.
    Matched MeSH terms: Biotin/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links