Resistance to chemotherapy agents is a major challenge infront of cancer patient treatment and researchers. It is known that several factors, such as multidrug resistance proteins and ATP-binding cassette families, are cell membrane transporters that can efflux several substrates such as chemotherapy agents from the cell cytoplasm. To reduce the adverse effects of chemotherapy agents, various targeted-based cancer therapy (TBCT) agents have been developed. TBCT has revolutionized cancer treatment, and several agents have shown more specific effects on tumor cells than chemotherapies. Small molecule inhibitors and monoclonal antibodies are specific agents that mostly target tumor cells but have low side effects on normal cells. Although these agents have been very useful for cancer treatment, however, the presence of natural and acquired resistance has blunted the advantages of targeted therapies. Therefore, development of new options might be necessary. A better understanding of tumor cell resistance mechanisms to current treatment agents may provide an appropriate platform for developing and improving new treatment modalities. Therefore, in this review, different mechanisms of tumor cell resistance to chemotherapy drugs and current targeted therapies have been described.
The clinical response to sulphonylurea, an oral antidiabetic agent often used in combination with metformin to control blood glucose in type 2 diabetes (T2DM) patients, has been widely associated with a number of gene polymorphisms, particularly those involved in insulin release. We have reviewed the genetic markers of CYP2C9, ABCC8, KCNJ11, TCF7L2 (transcription factor 7-like 2), IRS-1 (insulin receptor substrate-1), CDKAL1, CDKN2A/2B, KCNQ1 and NOS1AP (nitric oxide synthase 1 adaptor protein) genes that predict treatment outcomes of sulphonylurea therapy. A convincing pattern for poor sulphonylurea response was observed in Caucasian T2DM patients with rs7903146 and rs1801278 polymorphisms of the TCF7L2 and IRS-1 genes, respectively. However, limitations in evaluating the available studies including dissimilarities in study design, definitions of clinical end points, sample sizes and types and doses of sulphonylureas used as well as ethnic variability make the clinical applications challenging. Future studies need to address these limitations to develop personalized sulphonylurea medicine for T2DM management.
Attention has been paid to neurobehavioral effects of occupational and environmental exposures to chemicals such as pesticides, heavy metals and organic solvents. The area of research that includes neurobehavioral methods and effects in occupational and environmental health has been called "Occupational and Environmental Neurology and Behavioral Medicine." The methods, by which early changes in neurological, cognitive and behavioral function can be assessed, include neurobehavioral test battery, neurophysiological methods, questionnaires and structured interview, biochemical markers and imaging techniques. The author presents his observations of neurobehavioral and neurophysiological effects in Tokyo subway sarin poisoning cases as well as in pesticide users (tobacco farmers) in Malaysia in relation to Green Tobacco Sickness (GTS). In sarin cases, a variety effects were observed 6-8 months after exposure, suggesting delayed neurological effects. Studies on pesticide users revealed that organophosphorus and dithiocarbamate affected peripheral nerve conduction and postural balance; subjective symptoms related to GTS were also observed, indicating the effects of nicotine absorbed from wet tobacco leaves. In addition, non-neurological effects of pesticides and other chemicals are presented, in relation to genetic polymorphism and oxidative stress.