Displaying all 2 publications

Abstract:
Sort:
  1. Cheng CK, Bakar HA, Gollasch M, Huang Y
    Cardiovasc Drugs Ther, 2018 10;32(5):481-502.
    PMID: 30171461 DOI: 10.1007/s10557-018-6820-z
    Perivascular adipose tissue (PVAT) refers to the local aggregate of adipose tissue surrounding the vascular tree, exhibiting phenotypes from white to brown and beige adipocytes. Although PVAT has long been regarded as simply a structural unit providing mechanical support to vasculature, it is now gaining reputation as an integral endocrine/paracrine component, in addition to the well-established modulator endothelium, in regulating vascular tone. Since the discovery of anti-contractile effect of PVAT in 1991, the use of multiple rodent models of reduced amounts of PVAT has revealed its regulatory role in vascular remodeling and cardiovascular implications, including atherosclerosis. PVAT does not only release PVAT-derived relaxing factors (PVRFs) to activate multiple subsets of endothelial and vascular smooth muscle potassium channels and anti-inflammatory signals in the vasculature, but it does also provide an interface for neuron-adipocyte interactions in the vascular wall to regulate arterial vascular tone. In this review, we outline our current understanding towards PVAT and attempt to provide hints about future studies that can sharpen the therapeutic potential of PVAT against cardiovascular diseases and their complications.
    Matched MeSH terms: Blood Vessels/innervation
  2. Mustafa MR, Dharmani M, Kunheen NK, Sim MK
    Regul. Pept., 2004 Aug 15;120(1-3):15-22.
    PMID: 15177916
    An earlier study showed that des-aspartate-angiotensin I (DAA-I) attenuated the pressor action of angiotensin III in aortic rings of the spontaneously hypertensive rat (SHR) but not the normotensive Wistar Kyoto (WKY) rat. The present study investigated similar properties of DAA-I in isolated perfused kidneys and mesenteric beds of WKY and SHR. In the renal vasculature, angiotensin III induced a dose-dependent pressor response, which was more marked in the SHR than WKY in terms of significant greater magnitude of response and lower threshold. DAA-I attenuated the pressor action of angiotensin III in both the WKY and SHR. The attenuation in SHR was much more marked, occurring at doses as low as 10(-15) M DAA-I, while effective attenuation was only seen with 10(-9) M in WKY. The effects of DAA-I was not inhibited by PD123319 and indomethacin, indicating that its action was not mediated by angiotensin AT2 receptors and prostaglandins. However, the direct pressor action of angiotensin III in the SHR but not the WKY was attenuated by indomethacin suggesting that this notable difference could be due to known decreased response of renal vasculature to vasodilator prostaglandins in the SHR. Pressor responses to angiotensin III in the mesenteric vascular bed was also dose dependent, but smaller in magnitude compared to the renal response. The responses in the SHR, though generally smaller, were not significantly different from those of the WKY. This trend is in line with the similar observations with angiotensin III and II by other investigators. In terms of the effect of DAA-I, indomethacin and PD123319 on angiotensin III action, similar patterns to those of the renal vasculature were observed. This reaffirms that in the perfused kidney and mesenteric bed, where the majority of the vessels are contractile, femtomolar concentrations of DAA-I attenuates the pressor action of angiotensin III. The attenuation is not indomethacin sensitive and does not involve the angiotensin AT2 receptor. The findings suggest that DAA-I possesses protective vascular actions and is involved in the pathophysiology of hypertension.
    Matched MeSH terms: Blood Vessels/innervation*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links