Displaying all 2 publications

Abstract:
Sort:
  1. Ude CC, Shamsul BS, Ng MH, Chen HC, Norhamdan MY, Aminuddin BS, et al.
    Tissue Cell, 2012 Jun;44(3):156-63.
    PMID: 22402173 DOI: 10.1016/j.tice.2012.02.001
    Tracking of transplanted cells has become an important procedure in cell therapy. We studied the in vitro dye retention, survival and in vivo tracking of stem cells with PKH26 dye. Sheep BMSCs and ADSCs were labeled with 2, 4 and 8 μmol of PKH26 and monitored for six passages. Labeled BMSCs and ADSCs acquired mean cumulative population doubling of 12.7±0.4 and 14.6±0.5; unlabeled samples had 13.8±0.5 and 15.4±0.6 respectively. Upon staining with 2, 4 and 8 μmol PKH26, BMSCs had retentions of 40.0±5.8, 60.0±2.9 and 95.0±2.9%, while ADSCs had 92.0±1.2, 95.0±1.2 and 98.0±1.2%. ADSCs retentions were significantly higher at 2 and 4 μmol. On dye retention comparison at 8 μmol and 4 μmol for BMSCs and ADSCs; ADSCs were significantly higher at passages 2 and 3. The viability of BMSCs reduced from 94.0±1.2% to 90.0±0.6% and ADSCs from 94.0±1.2% to 52.0±1.2% (p<0.05) after 24h. BMSCs had significant up regulation of the cartilage genes for both the labeled and the unlabeled samples compared to ADSCs (p<0.05). PKH26 fluorescence was detected on the resected portions of the regenerated neo-cartilage. The recommended concentration of PKH26 for ADSCs is 2 μmol and BMSCs is 8 μmol, and they can be tracked up to 49 days.
    Matched MeSH terms: Bone Marrow Cells/chemistry*
  2. Abdul Rahman R, Mohamad Sukri N, Md Nazir N, Ahmad Radzi MA, Zulkifly AH, Che Ahmad A, et al.
    Tissue Cell, 2015 Aug;47(4):420-30.
    PMID: 26100682 DOI: 10.1016/j.tice.2015.06.001
    Articular cartilage is well known for its simple uniqueness of avascular and aneural structure that has limited capacity to heal itself when injured. The use of three dimensional construct in tissue engineering holds great potential in regenerating cartilage defects. This study evaluated the in vitro cartilaginous tissue formation using rabbit's bone marrow mesenchymal stem cells (BMSCs)-seeded onto poly(lactic-co-glycolic acid) PLGA/fibrin and PLGA scaffolds. The in vitro cartilaginous engineered constructs were evaluated by gross inspection, histology, cell proliferation, gene expression and sulphated glycosaminoglycan (sGAG) production at week 1, 2 and 3. After 3 weeks of culture, the PLGA/fibrin construct demonstrated gross features similar to the native tissue with smooth, firm and glistening appearance, superior histoarchitectural and better cartilaginous extracellular matrix compound in concert with the positive glycosaminoglycan accumulation on Alcian blue. Significantly higher cell proliferation in PLGA/fibrin construct was noted at day-7, day-14 and day-21 (p<0.05 respectively). Both constructs expressed the accumulation of collagen type II, collagen type IX, aggrecan and sox9, showed down-regulation of collagen type I as well as produced relative sGAG content with PLGA/fibrin construct exhibited better gene expression in all profiles and showed significantly higher relative sGAG content at each time point (p<0.05). This study suggested that with optimum in vitro manipulation, PLGA/fibrin when seeded with pluripotent non-committed BMSCs has the capability to differentiate into chondrogenic lineage and may serve as a prospective construct to be developed as functional tissue engineered cartilage.
    Matched MeSH terms: Bone Marrow Cells/chemistry
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links