Displaying all 3 publications

Abstract:
Sort:
  1. Moriya S, Chourasia D, Ng KW, Khel NB, Parhar IS
    J. Chem. Neuroanat., 2016 11;77:24-29.
    PMID: 27134039 DOI: 10.1016/j.jchemneu.2016.04.005
    Immediate early response (IER) 2 gene, a member of the IER family, is a gene of unknown function which is affected by external stimuli in the brain. In the present study, the full length sequence and localization of medaka (Oryzias latipes) ier2 was investigated in the brain to understand the functions of Ier2 in the future studies. The full length sequence of medaka ier2 was identified using a 3'-, 5'- rapid amplification of cDNA ends method, and distribution in the brain was identified using in situ hybridization. The identified full length ier2 mRNA consisted of 939 nucleotides spanning along 1 exon. The deduced amino acid sequence consisted of 171 amino acid residues which contains a highly conserved sequence, nuclear localization signal. ier2 mRNA was distributed in the telencephalon, midbrain and the hypothalamus. This highly conserved primary response gene Ier2 can be used to visualize and map functionally activated neuronal circuitry in the brain of medaka.
    Matched MeSH terms: Brain Chemistry/genetics*
  2. Loganathan K, Moriya S, Sivalingam M, Ng KW, Parhar IS
    J. Chem. Neuroanat., 2017 Dec;86:92-99.
    PMID: 29074372 DOI: 10.1016/j.jchemneu.2017.10.004
    kcnk10a has been predicted in zebrafish to be a member of the two-pore domain potassium ion (K+) channel-related K+ (TREK) channel family known as a thermoreceptor. Since reproduction is affected by temperature, Kcnk10a could be involved in the regulation of reproduction. However, expression of kcnk10a in the zebrafish brain and association with reproduction has not been identified. In this study, the full length sequence and localization of kcnk10a in the brain was investigated and gene expressions of the TREK channel family were examined to investigate association with reproduction. We initially identified the full length cDNA sequence of kcnk10a using Rapid Amplification of cDNA Ends and localization in the zebrafish brain using in situ hybridization. Furthermore, we examined the gene expression differences of kcnk2b, kcnk10a and kcnk10b mRNA between genders as well as developmental stages by real-time PCR. The deduced amino acid sequence of the identified kcnk10a mRNA contains highly conserved two pore domains and four transmembrane regions and was higher similarity to zebrafish Kcnk10b than zebrafish Kcnk2a and 2b. kcnk10a mRNA was widely distributed in the brain such as the preoptic area, hypothalamus and the midbrain. kcnk10a mRNA expression exhibited significant difference between mature male and female, and increase during puberty. Kcnk10a could be involved in the regulation of reproductive function.
    Matched MeSH terms: Brain Chemistry/genetics*
  3. Lim FT, Ogawa S, Parhar IS
    J. Chem. Neuroanat., 2016 11;77:176-186.
    PMID: 27427471 DOI: 10.1016/j.jchemneu.2016.07.005
    Sprouty-related protein-2 (Spred-2) is a negative regulator of extracellular signal-regulated kinases (ERK) pathway, which is important for cell proliferation, neuronal differentiation, plasticity and survival. Nevertheless, its general molecular characteristics such as gene expression patterns and potential role in neural repair in the brain remain unknown. Thus, this study aimed to characterise the expression of spred-2 in the zebrafish brain. Digoxigenin-in situ hybridization showed spred-2 mRNA-expressing cells were mainly seen in the proliferative zones such as the olfactory bulb, telencephalon, optic tectum, cerebellum, and the dorsal and ventral hypothalamus, and most of which were neuronal cells. To evaluate the potential role of spred-2 in neuro-regeneration, spred-2 gene expression was examined in the dorsal telencephalon followed by mechanical-lesion. Real-time PCR showed a significant reduction of spred-2 mRNA levels in the telencephalon on 1-day till 2-days post-lesion and gradually increased to normal levels as compared with intact. Furthermore, to confirm involvement of Spred-2 signalling in the cell proliferation after brain injury, double-labelling of spred-2 in-situ hybridization with immunofluorescence of BrdU and phosphorylated-ERK1/2 (p-ERK1/2), a downstream of Spred-2 was performed. Increase of BrdU and p-ERK1/2 immunoreactive cells suggest that a decrease in spred-2 after injury might associated with activation of the ERK pathway to stimulate cell proliferation in the adult zebrafish brain. The present study demonstrates the possible role of Spred-2 signalling in cell proliferative phase during the neural repair in the injured zebrafish brain.
    Matched MeSH terms: Brain Chemistry/genetics
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links