Displaying all 2 publications

Abstract:
Sort:
  1. Zulkifli I, Che Norma MT, Israf DA, Omar AR
    Br Poult Sci, 2002 Mar;43(1):141-5.
    PMID: 12003331
    1. This study was conducted to determine the effect of early-age food restriction on heat shock protein (hsp) 70 synthesis in the brains of female broiler chickens exposed to high ambient temperatures. 2. Chicks were brooded for 3 weeks and then maintained at 24+/-1 degrees C. 3. On d 0, chicks were assigned to one of 4 feeding regimens; each regimen was applied to 4 cages of chicks. The regimens were: (1) ad libitum feeding (AL); (2) 80% food restriction at 4, 5 and 6 d of age (F80); (3) 60% food restriction at 4, 5, and 6 d of age (F60); and (4) 40% food restriction at 4, 5 and 6 d of age (F40). From d 35 to d 41, all chicks were subjected to 38+/-1 degrees C for 2 h/d. 4. One day following food restriction (d 7), hsp 70 expression in the brain samples of F60 and F40 chicks was augmented but not those fed AL and F80. 5. Prior to the heat challenge (d 35), all chicks had similar hsp 70 response. Irrespective of feeding regimen, there was a marked increase in hsp 70 expression after 4 d of heat treatment (d 38). Following 7 d of heat exposure (d 41), except for the F60 chicks, the augmented hsp 70 expression in the brains of AL, F80 and F40 birds was not maintained. 6. Enhancement of hsp 70 expression was noted in birds subjected to F60, but not AL, F80 or F40, throughout the period of heat exposure.
    Matched MeSH terms: Brain Chemistry/physiology*
  2. Srinivasan V, Pandi-Perumal SR, Maestroni GJ, Esquifino AI, Hardeland R, Cardinali DP
    Neurotox Res, 2005;7(4):293-318.
    PMID: 16179266
    The pineal product melatonin has remarkable antioxidant properties. It scavenges hydroxyl, carbonate and various organic radicals, peroxynitrite and other reactive nitrogen species. Melatonyl radicals formed by scavenging combine with and, thereby, detoxify superoxide anions in processes terminating the radical reaction chains. Melatonin also enhances the antioxidant potential of the cell by stimulating the synthesis of antioxidant enzymes like superoxide dismutase, glutathione peroxidase and glutathione reductase, and by augmenting glutathione levels. The decline in melatonin production in aged individuals has been suggested as one of the primary contributing factors for the development of age-associated neurodegenerative diseases, e.g., Alzheimer's disease. Melatonin has been shown to be effective in arresting neurodegenerative phenomena seen in experimental models of Alzheimer's disease, Parkinsonism and ischemic stroke. Melatonin preserves mitochondrial homeostasis, reduces free radical generation, e.g., by enhancing mitochondrial glutathione levels, and safeguards proton potential and ATP synthesis by stimulating complex I and IV activities. Therapeutic trials with melatonin have been effective in slowing the progression of Alzheimer's disease but not of Parkinson's disease. Melatonin's efficacy in combating free radical damage in the brain suggests that it may be a valuable therapeutic agent in the treatment of cerebral edema after traumatic brain injury.
    Matched MeSH terms: Brain Chemistry/physiology
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links