Displaying all 2 publications

Abstract:
Sort:
  1. Selmi R, Dhibi M, Ben Said M, Ben Yahia H, Abdelaali H, Ameur H, et al.
    Trop Biomed, 2019 Sep 01;36(3):742-757.
    PMID: 33597496
    Livestock constitute habitual hosts and carriers for several infectious pathogens which may represent a serious public health concern affecting the readiness of military forces and lead to wide economic losses. The present report aimed to investigate the prevalence of some haemopathogens infecting military livestock, particularly, dromedaries, sheep and horses using Giemsa-stained blood smears. A total of 300 animals (100 from each species) were selected, clinically examined and sampled. Trypanosoma spp. (22.0%), Anaplasma spp. (17.0%) and Babesia spp. (1.0%) were identified in camels' blood. Six dromedaries were found to be co-infected by Trypanosoma and Anaplasma organisms (6.0%). Camels of female gender, infested by ticks and showing clinical signs were statistically more infected by Trypanosoma spp., compared to those of male gender, free of ticks and apparently healthy (P= 0.027, 0.000 and 0.004, respectively). Babesia spp. infection (1.0%) was identified, for the first time in Tunisia, in one adult female camel that presented abortion and anemia. Anaplasma spp. was the only haemopathogen identified in examined sheep (6.0%) and horses (17.0%). Horses infested by Hippobosca equina flies and sheep infested by Rhipicephalus turanicus ticks were more infected by Anaplasma spp. than other non-infested animals (P=0.046 and 0.042, respectively). Hyalomma dromedarii, H. impeltatum and H. excavatum were the most prevalent diagnosed ticks removed from camels with an intensity of infestation of 1.2 ticks per animal. However, in sheep, only R. turanicus was identified. H. equina and Tabanus spp. were the potential hematophagous flies found in dromedaries and horses herds. This useful data must be taken into consideration during animal treatment and vectors' control programs in Tunisian military farms which help to limit the diffusion of vector-borne diseases, keep our livestock healthy and reduce economic losses.
    Matched MeSH terms: Camels/parasitology
  2. Alajmi RA, Ayaad TH, Al-Harbi HT, Shaurub EH, Al-Musawi ZM
    Trop Biomed, 2019 Sep 01;36(3):758-765.
    PMID: 33597497
    The present work aimed to identify camel ticks Hyalomma dromedarii and Hyalomma marginatum using direct sequence of the mitochondrial 16S rRNA gene and the detection of their natural infection rate with Rickettsia and Borrelia using the PCR/ hybridization method for amplification of the citrate synthase (gltA) gene. The phylogenetic analysis showed 99% similarity between Hyalomma dromedarii and its reference with accession # L34306.1, as well as between Hyalomma marginatum and its reference with accession # KT391060.1 obtained from GenBank data base. The prevalence of H. dromedarii and H. marginatum was about 99% and 1%, respectively. The intraspecific variation among H. dromedarii ranged between 0.2-6.6%. The interspecific variation between H. dromedarii and H. marginatum was 18.3%. PCR/hybridization of the sampled H. dromedarii detected about 31%, 37% and 18% natural infection with Rickettsia, Borrelia and co-infection with both pathogens, respectively. In contrast, none of Rickettsia or Borrelia was detected in H. marginatum. The present study emphasizes the accuracy of the identification of camel ticks based on molecular techniques. The ability of H. dromedarii to spread more than one disease is an important issue from the epidemiological standpoint. Future epidemiological research should be carried out in Saudi Arabia to monitor the distribution of tick species and suggest effective control strategies.
    Matched MeSH terms: Camels/parasitology*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links