In general, African catfish shows higher survival rates in the dark conditions than in the light conditions. In this study, larval behavior of African catfish was observed under 0, 0.01, 0.1, 1, 10, and 100 lx using a CCD camera to investigate the reason why African catfish larvae show higher survival rates in dark conditions. The larvae showed significantly higher swimming activity under 0, 0.01, and 0.1 lx than that under 10 and 100 lx. The larvae also showed significantly increased aggressive behavior under 10 and 100 lx; the swimming larvae attacked resting individuals more frequently under 10 and 100 lx than under 0, 0.01, and 0.1 lx. The aggressive behavior and sharp teeth of the attacking larvae appeared to induce skin surface lesions on injured larvae. Chemical substances were then generated from the injured skin surface, and these chemical stimuli triggered cannibalistic behavior in other fish near the injured fish. The results of this study demonstrate that the higher survival rates of African catfish larvae under dark conditions are a result of inactivity and subsequent increase in chemical releasing stimuli concentrations around inactive individuals that triggers feeding behavior in nearby active catfish. Therefore, we recommend larval rearing of African catfish in dark or dim conditions, as it improves catfish survival rates.
Ecdysis is a common phenomenon that happens throughout the life phase of the giant freshwater prawn Macrobrachium rosenbergii. It is vital to better understand the correlation between cannibalism and biochemical compound that exists during the moulting process. The objective of the present study was to determine the amino acid profile released by M. rosenbergii during the ecdysis process that promotes cannibalism. To accomplish this, changes in amino acid levels (total amino acid (TAA) and free amino acid (FAA)) of tissue muscle, exoskeleton, and sample water of culture medium from the moulting (E-stage) and non-moulting (C-stage) prawns were analysed using high-performance liquid chromatography (HPLC). Comparison study revealed that among the TAA compounds, proline and sarcosine of tissues from moulting prawn were found at the highest levels. The level of FAA from water that contains moulting prawns (E-stage) was dominated by tryptophan and proline. Significant values obtained in the present study suggested that these amino acid compounds act as a chemical cue to promote cannibalism in M. rosenbergii during ecdysis. The knowledge of compositions and compounds that were released during the moulting process should be helpful for better understanding of the mechanism and chemical cues that play roles on triggering cannibalism, and also for future dietary manipulation to improve feeding efficiencies and feeding management, which indirectly impacts productivity and profitability.
Cannibalism is a major problem in lobster and crab aquaculture. Reducing the aggressive characteristics of lobsters and crabs can improve survival during the culturing process. In this study, juvenile scalloped spiny lobsters (Panulirus homarus) and crucifix crabs (Charybdis feriatus) were both cultured under different shelter and live prey conditions. Groups with shelter (seaweed and cotton filter) showed a better survival rate than the control group (no shelter; p < 0.05) for both Pa. homarus and Char. feriatus. Co-culturing with live prey (Litopenaeus vannamei) significantly benefited the juveniles of Pa. homarus and visibly increased the survival of juvenile Char. feriatus. Although providing shelter is currently the main method for reducing agonistic behavior, it must be continually altered as the lobsters and crabs grow. Live prey can grow and attract lobsters and crabs to hunt them, and live prey can be supplemented at any time. They can also be used as an additional source of income during the harvest season.
Many female parasitoid wasps optimize host selection to balance the benefits of high-quality hosts and the costs of predator- or hyperparasitoid-induced mortality risks to maximize their fitness. Cannibalism exists in many insect species and affects survival of parasitoid larvae developing in or on parasitized hosts. However, little is known about how parasitoid wasps resolve the fitness consequence of host cannibalism-induced mortality risk during host selection. We examined the effect of oothecal age on cannibalism in the American cockroach Periplaneta americana (L.) (Dictyoptera: Blattidae) and its effect on host age selection and fitness of its oothecal parasitoid Evania appendigaster (L.) (Hymenoptera: Evaniidae). P. americana differentially cannibalized 1-d-old (30‒60%) versus 10- to 40-d-old oothecae (<9%). However, parasitoid females did not avoid but still preferred to parasitize 1-d-old (45%) over 10- to 40-d-old oothecae (1.6‒20%). The parasitism rate was greater and the handling time was shorter on 1-d-old compared to older oothecae. For parasitoid progeny emerging from different-aged oothecae, regression analysis showed that development time increased and body size (measured as hind tibia length) and longevity decreased with oothecal age. These results demonstrate that reduced parasitoid progeny survival due to host cannibalism did not change the parasitoid's oviposition preference for newly laid oothecae, and that E. appendigaster females traded progeny survival for fitness gains for themselves and their progeny.