Aim: Rs16851030, a single-nucleotide variant located in the 3'-untranslated region of the ADORA1 gene, has been proposed as a potential marker of caffeine sensitivity in apnea of prematurity. Besides, it is associated with aspirin-induced asthma and the development of acute chest syndrome. However, its functional significance is still unconfirmed. This study aimed to elucidate the functional impact of rs16851030 by using CRISPR/Cas9 approach to induce the DNA variant and attendant physiological changes.Methods: Rs16851030 was introduced into HEK293 cells via homology-directed repair (HDR). Edited cells were fluorescence-enriched, sorted, isolated, and expanded into single-cell-derived clones. The edit was confirmed by Sanger sequencing. RNA sequencing was used to analyze affected pathways.Results: Rs16851030-mutant cells showed increased susceptibility to hypoxia, a condition related to apnea of prematurity. After 24 h of hypoxia, the viability of mutant clones 1 and 2 was low compared with wild-type cells (75.45% and 74.47% vs. 96.34%). RNA sequencing revealed transcriptomic changes linked to this increased vulnerability.Conclusion: Rs16851030 impairs cellular resistance to hypoxia, suggesting its role in conditions like apnea of prematurity. Further research should investigate the molecular mechanisms and transcriptomic alterations caused by rs16851030 under hypoxic conditions.
The hypoxia-inducible factors (HIFs) are key transcription factors in determining cellular responses involving alterations in protein levels in response to limited oxygen availability in animal cells. 2-Oxoglutarate-dependent oxygenases play key roles in regulating levels of HIF and its transcriptional activity. We describe MS-based proteomics studies in which we compared the results of subjecting human breast cancer MCF-7 cells to hypoxia or treating them with a cell-penetrating derivative (dimethyl N-oxalylglycine; DMOG) of the stable 2OG analogue N-oxalylglycine. The proteomic results are consistent with reported transcriptomic analyses and support the proposed key roles of 2OG-dependent HIF prolyl- and asparaginyl-hydroxylases in the hypoxic response. Differences between the data sets for hypoxia and DMOG might reflect context-dependent effects or HIF-independent effects of DMOG.