High amounts of insecticides are often used in intensive tropical vegetable production systems. Their persistence and residues in vegetables and soils need to be studied to ensure food safety and environmental stability. The dissipation of acephate, chlorpyrifos, cypermethrin and their metabolites was studied in green mustard [Brassica juncea (L.) Coss.] and soils. Two treatments, Impact 75 (acephate) and Agent 505 (cypermethrin plus chlorpyrifos), were applied 4 times at weekly intervals.
Preventive treatment with insecticides at high dosing rates before planting of a new crop- soil drenching- is a common practice in some tropical intensive cropping systems, which may increase the risk of leaching, soil functioning, and pesticide uptake in the next crop. The degradation rates and migration of acephate and chlorpyrifos and their primary metabolites, methamidophos and 3,5,6-trichloropyridinol (TCP), have been studied in clayey red yellow podzolic (Typic Paleudults), alluvial (Typic Udorthents), and red yellow podzolic soils (Typic Kandiudults) of Malaysia under field conditions. The initial concentrations of acephate and chlorpyrifos in topsoils were found to strongly depend on solar radiation. Both pesticides and their metabolites were detected in subsoils at the deepest sampling depth monitored (50 cm) and with maximum concentrations up to 2.3 mg kg(-1) at soil depths of 10 to 20 cm. Extraordinary high dissipation rates for weakly sorbed acephate was in part attributed to preferential flow which was activated due to the high moisture content of the soils, high precipitation and the presence of conducting macropores running from below the A horizons to at least 1 m, as seen from a dye tracer experiment. Transport of chlorpyrifos and TCP which both sorb strongly to soil organic matter was attributed to macropore transport with soil particles. The half-lives for acephate in topsoils were 0.4 to 2.6 d while substantially longer half-lives of between 12.6 and 19.8 d were observed for chlorpyrifos. The transport through preferential flow of strongly sorbed pesticides is of concern in the tropics.