Displaying all 3 publications

Abstract:
Sort:
  1. Patar A, Dockery P, Howard L, McMahon S
    J Neurosci Methods, 2019 01 01;311:418-425.
    PMID: 30267723 DOI: 10.1016/j.jneumeth.2018.09.027
    BACKGROUND: The use of animals to model spinal cord injury (SCI) requires extensive post-operative care and can be expensive, which makes an alternative model extremely attractive. The use ofex vivo slice cultures is an alternative way to study the pathophysiological changes that can mimic in vivo conditions and support the 3Rs (replacement, reduction and refinement) of animal use in SCI research models.

    NEW METHOD: In this study the presence of reactive astrocytes and NG2 proteoglycans was investigated in two ex vivo models of SCI; stab injury and transection injury. Stereological analysis to measure immunohistochemical staining was performed on the scar and injury zones to detect astrocytes and the chondroitin sulphate proteoglycan NG2.

    RESULTS: The volume fraction (Vv) of reactive astrocytes and NG2 proteoglycans increased significantly between day 3 and day 10 post injury in both ex vivo models. This data shows how ex vivo SCI models are a useful research tool allowing reduction of research cost and time involved in carrying out animal studies, as well as reducing the numbers of animals used.

    COMPARISON WITH EXISTING METHOD: This is the first evidence of an ex vivo stab injury model of SCI and also the first comparison of immunohistochemical staining for injury markers within stab injured and transection injured ex vivo slice cultures.

    CONCLUSIONS: The use of organotypic slice culture models provide a simple way to study the cellular consequences following SCI and they can also be used as a platform for potential therapeutics regimes for the treatment of SCI.

    Matched MeSH terms: Chondroitin Sulfate Proteoglycans
  2. Abd Ghafar N, Chua KH, Wan Ngah WZ, Che Hamzah J, Othman F, Abd Rahman R, et al.
    Cell Tissue Bank, 2014 Mar;15(1):25-34.
    PMID: 23292197 DOI: 10.1007/s10561-012-9360-y
    The in vivo quiescent corneal stroma keratocytes need to be transformed to activated state in order to obtain sufficient number of cells either for monolayer evaluation or corneal stroma reconstruction. This study aimed to investigate the phenotypic characterization of corneal stromal cells during culture expansion from the limbal region of the cornea. Isolated corneal keratocytes from limbal tissue of New Zealand White Strain rabbits' corneas (n = 6) were culture expanded until three passages. Keratocytes morphology was examined daily with viability, growth rate, number of cell doubling and population doubling time were recorded at each passage. The expression of collagen type 1, aldehyde dehydrogenase (ALDH), lumican and alpha smooth muscle actin (α-SMA) were detected by RT-PCR. Immunocytochemistry was also used to detect ALDH, α-SMA, collagen type I and Cytokeratin-3 (CK3). Growth kinetic study revealed that the growth rate was low at the initial passage but increase to about two folds with concomitant reduction in population doubling time in later passages. Freshly isolated and cultured keratocytes expressed collagen type 1, ALDH and lumican but α-SMA expression was absent. However, α-SMA was expressed along with the other genes during culture expansion. Keratocytes at P1 expressed all the proteins except CK3. These results suggest that cultured keratocytes maintained most of the gene expression profile of native keratocytes while the emergence of α-SMA in serial passages showed a mix population of various phenotypes. The phenotypic characterization of monolayer keratocytes provides useful information before reconstruction of bioengineered tissue or in vitro pharmaceutical applications.
    Matched MeSH terms: Chondroitin Sulfate Proteoglycans/biosynthesis
  3. Dowsett L, Porras AR, Kruszka P, Davis B, Hu T, Honey E, et al.
    Am J Med Genet A, 2019 02;179(2):150-158.
    PMID: 30614194 DOI: 10.1002/ajmg.a.61033
    Cornelia de Lange syndrome (CdLS) is a dominant multisystemic malformation syndrome due to mutations in five genes-NIPBL, SMC1A, HDAC8, SMC3, and RAD21. The characteristic facial dysmorphisms include microcephaly, arched eyebrows, synophrys, short nose with depressed bridge and anteverted nares, long philtrum, thin lips, micrognathia, and hypertrichosis. Most affected individuals have intellectual disability, growth deficiency, and upper limb anomalies. This study looked at individuals from diverse populations with both clinical and molecularly confirmed diagnoses of CdLS by facial analysis technology. Clinical data and images from 246 individuals with CdLS were obtained from 15 countries. This cohort included 49% female patients and ages ranged from infancy to 37 years. Individuals were grouped into ancestry categories of African descent, Asian, Latin American, Middle Eastern, and Caucasian. Across these populations, 14 features showed a statistically significant difference. The most common facial features found in all ancestry groups included synophrys, short nose with anteverted nares, and a long philtrum with thin vermillion of the upper lip. Using facial analysis technology we compared 246 individuals with CdLS to 246 gender/age matched controls and found that sensitivity was equal or greater than 95% for all groups. Specificity was equal or greater than 91%. In conclusion, we present consistent clinical findings from global populations with CdLS while demonstrating how facial analysis technology can be a tool to support accurate diagnoses in the clinical setting. This work, along with prior studies in this arena, will assist in earlier detection, recognition, and treatment of CdLS worldwide.
    Matched MeSH terms: Chondroitin Sulfate Proteoglycans/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links