Displaying all 3 publications

Abstract:
Sort:
  1. Jayalakshmi P, Malik AK, Wong NW
    Malays J Pathol, 1994 Dec;16(2):145-50.
    PMID: 9053563
    A retrospective histological analysis of colonic biopsies received by the Department of Pathology, University of Malaya during the 4-year-period between 1990 and 1993 revealed nine cases of microscopic colitis (MC). The ages of the patients ranged from 18 to 53 years. Seven patients were females with a female to male ratio of 3.5 :1. The main clinical symptom was chronic diarrhoea of duration varying from 4 months to 5 years. None of the patients had any systemic illness or were on any prior medication. Colonoscopy and barium enema observations in all the subjects were essentially normal. Colonic biopsies showed diffuse plasmacytic infiltration of the lamina propria, intraepithelial lymphocytic infiltration and normal crypt pattern. To the best of our knowledge, this is the first documented report on MC from Malaysia. It is envisaged that better recognition of this condition by histopathologists would reduce the numbers in the often diagnosed category of "nonspecific colitis".
    Matched MeSH terms: Colitis/complications
  2. Pandurangan AK, Esa NM
    Asian Pac J Cancer Prev, 2014;15(2):551-60.
    PMID: 24568457
    Colorectal cancer (CRC) is the third most common malignancy and fourth most common cause of cancer mortality worldwide. Untreated chronic inflammation in the intestine ranks among the top three high-risk conditions for colitis-associated colorectal cancer (CAC). Signal Transducer and Activator of Transcription 3 (STAT3) protein is a member of the STAT family of transcription factors often deregulated in CRC. In this review, we try to emphasize the critical role of STAT3 in CAC as well as the crosstalk of STAT3 with inflammatory cytokines, nuclear factor (NF)- κB, PI3K/Akt, Mammalian Target of Rapamycin (mTOR), Notch, Wnt/β-catenin and microRNA (MiR) pathways. STAT3 is considered as a primary drug target to treat CAC in humans and rodents. Also we updated the findings for inhibitors of STAT3 with regard to effeects on tumorigenesis. This review will hopefully provide insights on the use of STAT3 as a therapeutic target in CAC.
    Matched MeSH terms: Colitis/complications*
  3. Li H, Zhao L, Lau YS, Zhang C, Han R
    Oncogene, 2021 01;40(1):177-188.
    PMID: 33110234 DOI: 10.1038/s41388-020-01523-5
    Colorectal cancer is the third leading cause of cancer-related deaths in the United States and the third most common cancer in men and women. Around 20% colon cancer cases are closely linked with colitis. Both environmental and genetic factors are thought to contribute to colon inflammation and tumor development. However, the genetic factors regulating colitis and colon tumorigenesis remain elusive. Since reactive oxygen species (ROS) is vitally involved in tissue inflammation and tumorigenesis, here we employed a genome-wide CRISPR knockout screening approach to systemically identify the genetic factors involved in the regulation of oxidative stress. Next generation sequencing (NGS) showed that over 600 gRNAs including the ones targeting LGALS2 were highly enriched in cells survived after sublethal H2O2 challenge. LGALS2 encodes the glycan-binding protein Galectin 2 (Gal2), which is predominantly expressed in the gastrointestinal tract and downregulated in human colon tumors. To examine the role of Gal2 in colitis, we employed the dextran sodium sulfate (DSS)-induced acute colitis model in mice with (WT) or without Lgals2 (Gal2-KO) and showed that Gal2 deficiency ameliorated DSS-induced colitis. We further demonstrated that Gal2-KO mice developed significantly larger tumors than WT mice using Azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced colorectal cancer model. We found that STAT3 phosphorylation was significantly increased in Gal2-deficient tumors as compared to those in WT mice. Gal2 overexpression decreased the proliferation of human colon tumor epithelial cells and blunted H2O2-induced STAT3 phosphorylation. Overall, our results demonstrate that Gal2 plays a suppressive role in colon tumor growth and highlights the therapeutic potential of Gal2 in colon cancer.
    Matched MeSH terms: Colitis/complications
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links