Displaying all 2 publications

Abstract:
Sort:
  1. Kuppusamy P, Ichwan SJ, Al-Zikri PN, Suriyah WH, Soundharrajan I, Govindan N, et al.
    Biol Trace Elem Res, 2016 Oct;173(2):297-305.
    PMID: 26961292 DOI: 10.1007/s12011-016-0666-7
    Recently, metal nanoparticles have been getting great medical and social interests due to their potential physico-chemical properties such as higher affinity, low molecular weight, and larger surface area. The biosynthesized gold and silver nanoparticles are spherical, triangular in shape with an average size of 24-150 nm as reported in our earlier studies. The biological properties of synthesized gold and silver nanoparticles are demonstrated in this paper. The different in vitro assays such as MTT, flow cytometry, and reverse transcription polymerase chain reaction (RT-qPCR) techniques were used to evaluate the in vitro anticancer properties of synthesized metal nanoparticles. The biosynthesized gold and silver nanoparticles have shown reduced cell viability and increased cytotoxicity in HCT-116 colon cancer cells with IC50 concentration of 200 and 100 μg/ml, respectively. The flow cytometry experiments revealed that the IC50 concentrations of gold and silver nanoparticle-treated cells that have significant changes were observed in the sub-G1 cell cycle phase compared with the positive control. Additionally, the relative messenger RNA (mRNA) gene expressions of HCT-116 cells were studied by RT-qPCR techniques. The pro-apoptotic genes such as PUMA (++), Caspase-3 (+), Caspase-8 (++), and Caspase-9 (++) were upregulated in the treated HCT-116 cells compared with cisplatin. Overall, these findings have proved that the synthesized gold and silver nanoparticles could be potent anti-colon cancer drugs.
    Matched MeSH terms: Commelina/chemistry*
  2. Shah MD, D'Souza UJA, Iqbal M
    Environ Health Prev Med, 2017 Sep 11;22(1):66.
    PMID: 29165163 DOI: 10.1186/s12199-017-0673-0
    BACKGROUND: This study aims to assess the hepatoprotective potential of Commelina nudiflora against CCl4-induced hepatic injury in rats.

    METHOD: Antioxidant activities were determined. Phytochemical analysis was performed by gas chromatography mass spectrometry (GCMS). In the in vivo study, Sprague Dawley rats were pretreated with C. nudiflora (150, 300, and 450 mg kg body weight (b.wt.)) once daily for 14 days followed by two doses of CCl4 (1 ml/kg b.wt.). After 2 weeks, the rats were sacrificed and hepatoprotective analysis was performed.

    RESULTS: In vitro studies have shown that the extract possessed strong antioxidant activity and has ability to scavenge 2,2-diphenyl-2-picrylhydrazyl-free radicals effectively. GCMS analysis of the C. nudiflora extract revealed the presence of various bioactive compounds. Administration of C. nudiflora significantly reduced the impact of CCl4 toxicity on serum markers of liver damage, serum aspartate transaminase (AST), and alanine transaminase (ALT). C. nudiflora also increased antioxidant levels of hepatic glutathione (GSH) and antioxidant enzymes and ameliorated the elevated hepatic formation of malondialdehyde (MDA) induced by CCl4 in rats. Histopathological examination indicated that C. nudiflora protect the liver from the toxic effect of CCl4 and healed lesions such as necrosis, fatty degeneration, and hepatocyte injury as irregular lamellar organization and dilations in the endoplasmic reticulum. The immunohistochemical studies revealed that pretreatment of C. nudiflora decreased the formation of 4-hydroxy-2-nonenal (HNE)-modified protein adducts and 8-hydroxy-2'-deoxyguanosine (8-OHdG). Furthermore, overexpression of the proinflammatory cytokines TNF-α, IL-6, and prostaglandin E2 is also reduced.

    CONCLUSION: These findings exhibited the potential prospect of C. nudiflora as functional ingredients to prevent ROS-related liver damage.

    Matched MeSH terms: Commelina/chemistry*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links