Displaying all 3 publications

Abstract:
Sort:
  1. Gurr GM, Lu Z, Zheng X, Xu H, Zhu P, Chen G, et al.
    Nat Plants, 2016 02 22;2:16014.
    PMID: 27249349 DOI: 10.1038/nplants.2016.14
    Global food security requires increased crop productivity to meet escalating demand(1-3). Current food production systems are heavily dependent on synthetic inputs that threaten the environment and human well-being(2,4,5). Biodiversity, for instance, is key to the provision of ecosystem services such as pest control(6,7), but is eroded in conventional agricultural systems. Yet the conservation and reinstatement of biodiversity is challenging(5,8,9), and it remains unclear whether the promotion of biodiversity can reduce reliance on inputs without penalizing yields on a regional scale. Here we present results from multi-site field studies replicated in Thailand, China and Vietnam over a period of four years, in which we grew nectar-producing plants around rice fields, and monitored levels of pest infestation, insecticide use and yields. Compiling the data from all sites, we report that this inexpensive intervention significantly reduced populations of two key pests, reduced insecticide applications by 70%, increased grain yields by 5% and delivered an economic advantage of 7.5%. Additional field studies showed that predators and parasitoids of the main rice pests, together with detritivores, were more abundant in the presence of nectar-producing plants. We conclude that a simple diversification approach, in this case the growth of nectar-producing plants, can contribute to the ecological intensification of agricultural systems.
    Matched MeSH terms: Crops, Agricultural/drug effects
  2. Soda W, Noble AD, Suzuki S, Simmons R, Sindhusen LA, Bhuthorndharaj S
    J Environ Qual, 2006 Oct 27;35(6):2293-301.
    PMID: 17071900
    Acid waste bentonite is a byproduct from vegetable oil bleaching that is acidic (pH < 3.0) and hydrophobic. These materials are currently disposed of in landfills and could potentially have a negative impact on the effective function of microbes that are intolerant of acidic conditions. A study was undertaken using three different sources of acid waste bentonites, namely soybean oil bentonite (SB), palm oil bentonite (PB), and rice bran oil bentonite (RB). These materials were co-composted with rice husk, rice husk ash, and chicken litter to eliminate their acid reactivity and hydrophobic nature. The organic carbon (OC) content, pH, exchangeable cations, and cation exchange capacity (CEC) of the acid-activated bentonites increased significantly after the co-composting phase. In addition, the hydrophobic nature of these materials as measured using the water drop penetration time (WDPT) decreased from >10 800 s to 16 to 80 s after composting. Furthermore, these composted materials showed positive impacts on soil physical attributes including specific surface area, bulk density, and available water content for crop growth. Highly significant increases in maize biomass (Zea mays L.) production over two consecutive cropping cycles was observed in treatments receiving co-composted bentonite. The study clearly demonstrates the potential for converting an environmentally hazardous material into a high-quality soil conditioner using readily available agricultural byproducts. It is envisaged that the application of these composted acid waste bentonites to degraded soils will increase productivity and on-farm income, thus contributing toward food security and poverty alleviation.
    Matched MeSH terms: Crops, Agricultural/drug effects*
  3. Prasad TNVKV, Adam S, Visweswara Rao P, Ravindra Reddy B, Giridhara Krishna T
    IET Nanobiotechnol, 2017 Apr;11(3):277-285.
    PMID: 28476985 DOI: 10.1049/iet-nbt.2015.0122
    Advancement in materials synthesis largely depends up on their diverse applications and commercialisation. Antifungal effects of phytogenic silver nanoparticles (AgNPs) were evident, but the reports on the effects of the same on agricultural crops are scant. Herein, we report for the first time, size dependent effects of phytogenic AgNPs (synthesised using Stevia rebaudiana leaf extract) on the germination, growth and biochemical parameters of three important agricultural crops viz., rice (Oryza sativa L), maize (Zea mays L) and peanut (Arachis hypogaea L). AgNPs with varied sizes were prepared by changing the concentration and quantity of the Stevia rebaudiana leaf extract. As prepared AgNPs were characterized using the techniques, such as high-resolution transmission electron microscopy, particle size and zeta potential analyser. The measured (dynamic light scattering technique) average sizes of particles are ranging from 68.5 to 116 nm. Fourier transform infrared studies confirmed the participation of alcohols, aldehydes and amides in the reduction and stabilisation of the AgNPs. Application of these AgNPs to three agricultural crop seeds (rice, maize and peanut) resulted in size dependent effects on their germination, growth and biochemical parameters such as, chlorophyll content, carotenoid and protein content. Further, antifungal activity of AgNPs also evaluated against fungi, Aspergillus niger.
    Matched MeSH terms: Crops, Agricultural/drug effects
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links