Displaying 1 publication

Abstract:
Sort:
  1. Homouz D, Joyce-Tan KH, ShahirShamsir M, Moustafa IM, Idriss HT
    J Mol Graph Model, 2018 09;84:236-241.
    PMID: 30138833 DOI: 10.1016/j.jmgm.2018.08.007
    DNA polymerase β is a 39 kDa enzyme that is a major component of Base Excision Repair in human cells. The enzyme comprises two major domains, a 31 kDa domain responsible for the polymerase activity and an 8 kDa domain, which bind ssDNA and has a deoxyribose phosphate (dRP) lyase activity. DNA polymerase β was shown to be phosphorylated in vitro with protein kinase C (PKC) at serines 44 and 55 (S44 and S55), resulting in loss of its polymerase enzymic activity, but not its ability to bind ssDNA. In this study, we investigate the potential phosphorylation-induced structural changes for DNA polymerase β using molecular dynamics simulations. The simulations show drastic conformational changes of the polymerase structure as a result of S44 phosphorylation. Phosphorylation-induced conformational changes transform the closed (active) enzyme structure into an open one. Further analysis of the results points to a key hydrogen bond and newly formed salt bridges as potential drivers of these structural fluctuations. The changes observed with S55/44 and S55 phosphorylation were less dramatic and the integrity of the H-bond was not compromised. Thus the phosphorylation of S44 is the major contributor to structural fluctuations that lead to loss of enzymatic activity.
    Matched MeSH terms: DNA Polymerase beta/metabolism
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links