Displaying all 4 publications

Abstract:
Sort:
  1. Yap CK, Ismail A, Cheng WH, Tan SG
    Ecotoxicol Environ Saf, 2006 Mar;63(3):413-23.
    PMID: 16406592
    The concentrations of Cu, Pb, and Zn in the crystalline style (CS) and in the remaining soft tissues (ST) of the green-lipped mussel Perna viridis from 10 geographical sites along the coastal waters off peninsular Malaysia were determined. The CS, compared with the remaining ST, accumulated higher levels of Cu in both contaminated and uncontaminated samples, indicating that the style has a higher affinity for the essential Cu to bind with metallothioneins. The similar pattern of Cu accumulation in the different ST of mussels collected from clean and Cu-contaminated sites indicated that the detoxification capacity of the metallothioneins had not been overloaded. For Pb, higher levels of the metal in the CS than in the remaining ST were found only in mussels collected from a contaminated site at Kg. Pasir Puteh. This indicated a tissue redistribution of Pb due to its binding to metallothioneins for Pb detoxification and the potential of the CS as an indicator organ of Pb bioavailability and contamination. For Zn, the above two phenomena were not found since no obvious patterns were observed (lower levels of Zn in the CS than in the remaining ST) in contaminated and uncontaminated samples due to the mechanism of partial regulation. Generally, all the different STs studied (foot, mantle, gonad, CS, gill, muscle, and byssus) are good biomonitoring tissues for Cu and Pb bioavailabilities and contamination. Among these organs, the CS was found to be the best organ for biomonitoring Cu. The present data also suggest the use of the tissue redistribution of Pb in P. viridis as an indicator of Pb bioavailability and contamination in coastal waters.
    Matched MeSH terms: Digestive System/metabolism*
  2. Tan ETT, Al Jassim R, D'Arcy BR, Fletcher MT
    J Agric Food Chem, 2017 Aug 30;65(34):7528-7534.
    PMID: 28787565 DOI: 10.1021/acs.jafc.7b02492
    The known accumulation of the hepatotoxin indospicine in tissues of camels and cattle grazing Indigofera pasture plants is unusual in that free amino acids would normally be expected to be degraded during the fermentation processes in these foregut fermenters. In this study, in vitro experiments were carried out to examine the degradability of indospicine of Indigofera spicata by camel and cattle foregut microbiota. In the first experiment, a 48 h in vitro incubation was carried out using foregut fluid samples that were collected from 15 feral camels and also a fistulated cow. Degradability of indospicine ranged between 97% and 99%, with the higher value of 99% for camels. A pooled sample of foregut fluids from three camels that were on a roughage diet was used in a second experiment to examine the time-dependent degradation of indospicine present in the plant materials. Results indicated that camels' foregut fluids have the ability to biodegrade ∼99% of the indospicine in I. spicata within 48 h of incubation and produced 2-aminopimelamic acid and 2-aminopimelic acid. The time-dependent degradation analysis showed rapid indospicine degradation (65 nmol/h) during the first 8-18 h of incubation followed by a slower degradation rate (12 nmol/h) between 18 and 48 h. Indospicine degradation products were also degraded toward the end of the experiment. The results of these in vitro degradation studies suggest that dietary indospicine may undergo extensive degradation in the foregut of the camel, resulting in trace levels after 48 h. The retention time for plant material in the camel foregut varies depending on feed quality, and the results of this study together with the observed accumulation of indospicine in camel tissues suggest that, although indospicine can be degraded by foregut fermentation, this degradation is not complete before the passage of the digesta into the intestine.
    Matched MeSH terms: Digestive System/metabolism*
  3. Zulkifli AN, Zakeri HA, Azmi WA
    J Insect Sci, 2018 Sep 01;18(5).
    PMID: 30285257 DOI: 10.1093/jisesa/iey093
    The red palm weevil (RPW), Rhynchophorus ferrugineus Olivier (Coleoptera: Dryophthoridae) is one of the most dangerous pests of major cultivated palms including coconut, oil palm, and sago. The larval stage of the weevil causes the most destruction of the palms as it completely destroys the palm cabbage. In this study, the larvae were given three different diets-coconut cabbage, oil palm cabbage, and sago stem, under laboratory conditions for food consumption and developmental time experiment. The protein profiles of the digestive systems of the larvae fed on these three diets were also determined. Although the coconut diet was the most consumed by RPW larvae compared to oil palm and sago diets, the growth rate of RPW larvae on oil palm diet was however significantly shorter than those on the coconut and sago diets: the RPW only need 1 mo and 9 d to complete the larval duration. Proteins profiling of eight 2-DE gel protein spots that range 50-20 kDa were identified by mass spectrometry sequence analysis. Based on the Matrix Science Software, the most dominant protein was cationic trypsin. However, based on the NCBI BLAST tool, aminopeptidase N was the most dominant enzyme. This finding can lead to the development of pest control strategies based on the antinutritional protease inhibitors as potential biocontrol agents. Urgent action to find effective control methods should be taken seriously as this weevil is presumed to be one of the serious pests of oil palm industry in Malaysia.
    Matched MeSH terms: Digestive System/metabolism
  4. Sayyed AH, Haward R, Herrero S, Ferré J, Wright DJ
    Appl Environ Microbiol, 2000 Apr;66(4):1509-16.
    PMID: 10742234
    Four subpopulations of a Plutella xylostella (L.) strain from Malaysia (F(4) to F(8)) were selected with Bacillus thuringiensis subsp. kurstaki HD-1, Bacillus thuringiensis subsp. aizawai, Cry1Ab, and Cry1Ac, respectively, while a fifth subpopulation was left as unselected (UNSEL-MEL). Bioassays at F(9) found that selection with Cry1Ac, Cry1Ab, B. thuringiensis subsp. kurstaki, and B. thuringiensis subsp. aizawai gave resistance ratios of >95, 10, 7, and 3, respectively, compared with UNSEL-MEL (>10,500, 500, >100, and 26, respectively, compared with a susceptible population, ROTH). Resistance to Cry1Ac, Cry1Ab, B. thuringiensis subsp. kurstaki, and B. thuringiensis subsp. aizawai in UNSEL-MEL declined significantly by F(9). The Cry1Ac-selected population showed very little cross-resistance to Cry1Ab, B. thuringiensis subsp. kurstaki, and B. thuringiensis subsp. aizawai (5-, 1-, and 4-fold compared with UNSEL-MEL), whereas the Cry1Ab-, B. thuringiensis subsp. kurstaki-, and B. thuringiensis subsp. aizawai-selected populations showed high cross-resistance to Cry1Ac (60-, 100-, and 70-fold). The Cry1Ac-selected population was reselected (F(9) to F(13)) to give a resistance ratio of >2,400 compared with UNSEL-MEL. Binding studies with (125)I-labeled Cry1Ab and Cry1Ac revealed complete lack of binding to brush border membrane vesicles prepared from Cry1Ac-selected larvae (F(15)). Binding was also reduced, although less drastically, in the revertant population, which indicates that a modification in the common binding site of these two toxins was involved in the resistance mechanism in the original population. Reciprocal genetic crosses between Cry1Ac-reselected and ROTH insects indicated that resistance was autosomal and showed incomplete dominance. At the highest dose of Cry1Ac tested, resistance was recessive while at the lowest dose it was almost completely dominant. The F(2) progeny from a backcross of F(1) progeny with ROTH was tested with a concentration of Cry1Ac which would kill 100% of ROTH moths. Eight of the 12 families tested had 60 to 90% mortality, which indicated that more than one allele on separate loci was responsible for resistance to Cry1Ac.
    Matched MeSH terms: Digestive System/metabolism
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links