Displaying all 2 publications

Abstract:
Sort:
  1. Lee OW, Gao D, Peng T, Wunderlich J, Mao D, Balasubramanian G, et al.
    Trends Hear, 2025;29:23312165241311721.
    PMID: 39850978 DOI: 10.1177/23312165241311721
    This study used functional near-infrared spectroscopy (fNIRS) to measure aspects of the speech discrimination ability of sleeping infants. We examined the morphology of the fNIRS response to three different speech contrasts, namely "Tea/Ba," "Bee/Ba," and "Ga/Ba." Sixteen infants aged between 3 and 13 months old were included in this study and their fNIRS data were recorded during natural sleep. The stimuli were presented using a nonsilence baseline paradigm, where repeated standard stimuli were presented between the novel stimuli blocks without any silence periods. The morphology of fNIRS responses varied between speech contrasts. The data were fit with a model in which the responses were the sum of two independent and concurrent response mechanisms that were derived from previously published fNIRS detection responses. These independent components were an oxyhemoglobin (HbO)-positive early-latency response and an HbO-negative late latency response, hypothesized to be related to an auditory canonical response and a brain arousal response, respectively. The goodness of fit of the model with the data was high with median goodness of fit of 81%. The data showed that both response components had later latency when the left ear was the test ear (p 
  2. Tan KW, Stephen ID
    Perception, 2013;42(7):733-41.
    PMID: 24344549
    Human facial skin colour reflects individuals' underlying health (Stephen et al 2011 Evolution & Human Behavior 32 216-227); and enhanced facial skin CIELab b* (yellowness), a* (redness), and L* (lightness) are perceived as healthy (also Stephen et al 2009a International Journal of Primatology 30 845-857). Here, we examine Malaysian Chinese participants' detection thresholds for CIELab L* (lightness), a* (redness), and b* (yellowness) colour changes in Asian, African, and Caucasian faces and skin coloured patches. Twelve face photos and three skin coloured patches were transformed to produce four pairs of images of each individual face and colour patch with different amounts of red, yellow, or lightness, from very subtle (deltaE = 1.2) to quite large differences (deltaE = 9.6). Participants were asked to decide which of sequentially displayed, paired same-face images or colour patches were lighter, redder, or yellower. Changes in facial redness, followed by changes in yellowness, were more easily discriminated than changes in luminance. However, visual sensitivity was not greater for redness and yellowness in nonface stimuli, suggesting red facial skin colour special salience. Participants were also significantly better at recognizing colour differences in own-race (Asian) and Caucasian faces than in African faces, suggesting the existence of cross-race effect in discriminating facial colours. Humans' colour vision may have been selected for skin colour signalling (Changizi et al 2006 Biology Letters 2 217-221), enabling individuals to perceive subtle changes in skin colour, reflecting health and emotional status.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links