Displaying all 2 publications

Abstract:
Sort:
  1. Beheshti S, Ershadi S, Zamani F, Azimzadeh M, Wesal MW
    Epilepsy Res, 2023 Nov;197:107234.
    PMID: 37793283 DOI: 10.1016/j.eplepsyres.2023.107234
    Ghrelin is a peptide, which has been shown to affect seizures. However, there is not a consensus about its real impact on the control of seizure severity. We assessed the influence of intra-amygdala injections of a ghrelin receptor (GHSR) antagonist, as well as a GHSR inverse agonist on the electrical kindling-induced seizures. Two unipolar electrodes and a tripolar electrode twisted with a guide cannula were implanted in the skull surface or the basolateral amygdala of adult male rats, respectively. A rapid electrical kindling protocol was applied for kindling epileptogenesis. The stimulations were applied until rats showed three consecutive stage five seizures. Each rat was considered as its control. D-Lys-3-GHRP-6 (1, 12.5, and 25 μg/rat) or [D-Arg, D-phe, D-Trp, heu] substance P (D-SP) (50, 500 and 5000 ng/rat) as the GHSR antagonist or inverse agonist were injected into the basolateral amygdala. Seizure parameters including after-discharge duration (ADD), stage five duration (S5D), and seizure stage (SS) were documented thirty minutes following administration of the drugs or saline. Antagonism of the GHSR in the amygdala, significantly increased seizure induction in the kindled rats, in a dose-dependent manner, and induced spontaneous seizures leading to status epilepticus. Conversely, D-SP had a dose-dependent anticonvulsant activity, indicated by decreased ADD and S5D. The results show that GHSR inverse agonism suppressed seizure severity in the rat amygdala kindling model, whereas GHSR antagonism made seizures more severe. Therefore, when considering the ghrelin system to modulate seizures, it is crucial to note the differential impact of various GHSR ligands.
    Matched MeSH terms: Drug Inverse Agonism
  2. Lim WK
    Recent Pat CNS Drug Discov, 2007 Jun;2(2):107-12.
    PMID: 18221221
    G protein-coupled receptors (GPCRs) are the largest class of cell surface receptors in humans. They convey extracellular signals into the cell interior by activating intracellular processes such as heterotrimeric G protein-dependent signaling pathways. They are widely distributed in the nervous system, and mediate key physiological processes including cognition, mood, appetite, pain and synaptic transmission. With at least 30% of marketed drugs being GPCR modulators, they are a major therapeutic target in the pharmaceutical industry's drug discovery programs. This review will survey recently patented ligands for GPCRs implicated in CNS disorders, in particular the metabotropic glutamate, adenosine and cannabinoid receptors. Metabotropic glutamate receptors regulate signaling by glutamate, the major excitatory brain neurotransmitter, while adenosine is a ubiquitous neuromodulater mediating diverse physiological effects. Recent patents for ligands of these receptors include mGluR5 antagonists and adenosine A(1) receptor agonists. Cannabinoid receptors remain one of the most important GPCR drug discovery target due to the intense interest in CB(1) receptor antagonists for treating obesity and metabolic syndrome. Such small molecule ligands are the outcome of the continuing focus of many pharmaceutical companies to identify novel GPCR agonist, antagonist or allosteric modulators useful for CNS disorders, for which more effective drugs are eagerly awaited.
    Matched MeSH terms: Drug Inverse Agonism
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links