Displaying all 4 publications

Abstract:
Sort:
  1. Tan NH, Ponnudurai G
    PMID: 1981349
    1. The hemorrhagic, procoagulant, anticoagulant, protease, phosphodiesterase, alkaline phosphomonoesterase, L-amino acid oxidase, acetylcholinesterase, arginine ester hydrolase, phospholipase A, 5'-nucleotidase and hyaluronidase activities of 39 samples of venoms from 13 species (15 taxa) of Australian elapids were determined and the Sephadex G-75 gel filtration patterns for some of the venoms were also examined. 2. The results indicate that Australian elapid venoms can be divided into two groups: procoagulant Australian venoms (including N. scutatus, N. ater, O. scutellatus, O. microlepidotus, P. porphyriacus, T. carinatus, H. stephensii and P. textilis) and non-procoagulant Australian venoms (including A. superbus, P. colletti, P. australis, P. guttatus and A. antarcticus). 3. The non-procoagulant Australian venoms exhibited biological properties similar to other elapid venoms, while the procoagulant Australian venoms exhibited some properties characteristic of viperid venoms. 4. The data show that information on venom biological properties can be used for differentiation of many species of Australian elapids. 5. Particularly useful for this purpose are the hyaluronidase, alkaline phosphomonoesterase, acetylcholinesterase, and the procoagulant activities and the Sephadex G-75 gel filtration patterns of the venoms.
    Matched MeSH terms: Elapid Venoms/isolation & purification
  2. Tan NH, Ponnudurai G
    Comp. Biochem. Physiol., B, 1992 May;102(1):103-9.
    PMID: 1526113
    1. Examination of the polyacrylamide gel electrophoretic (PAGE) and SDS-PAGE patterns of snake venoms shows that these patterns are useful for species differentiation (and hence identification) for snakes of certain genera but have only limited application for snakes from some other genera, due either to the marked individual variations in the venoms or the lack of marked interspecific differences within the same genus. 2. There is no substantial intersubspecific difference in the electrophoretic patterns of the venoms. 3. In general there are no common characteristics in the electrophoretic patterns of the venom at the generic level because of the wide variations in the electrophoretic patterns of venoms of snakes within the same genus. 4. At the familial level, the venoms of Elapidae exhibited SDS-PAGE patterns distinct from those of Crotalidae.
    Matched MeSH terms: Elapid Venoms/isolation & purification
  3. Tan NH
    Arch Biochem Biophys, 1982 Oct 01;218(1):51-8.
    PMID: 7149742
    Matched MeSH terms: Elapid Venoms/isolation & purification*
  4. Rusmili MR, Tee TY, Mustafa MR, Othman I, Hodgson WC
    Biochem Pharmacol, 2014 Mar 15;88(2):229-36.
    PMID: 24440452 DOI: 10.1016/j.bcp.2014.01.004
    Bungarus fasciatus is one of three species of krait found in Malaysia. Envenoming by B. fasciatus results in neurotoxicity due to the presence of presynaptic and postsynaptic neurotoxins. Antivenom, either monovalent or polyvalent, is the treatment of choice in systemically envenomed patients. In this study, we have isolated a postsynaptic neurotoxin which we named α-elapitoxin-Bf1b. This toxin has an approximate molecular weight of 6.9 kDa, with LCMS/MS data showing that it is highly homologous with Neurotoxin 3FTx-RI, a toxin identified in the Bungarus fasciatus venom gland transcriptome. α-Elapitoxin-Bf1b also shared similarity with short-chain neurotoxins from Laticauda colubrina and Pseudechis australis. α-Elapitoxin-Bf1b produced concentration- and time-dependent neurotoxicity in the indirectly-stimulated chick biventer cervicis muscle preparation, an effect partially reversible by repetitive washing of the preparation. The pA2 value for α-elapitoxin-Bf1b of 9.17 ± 0.64, determined by examining the effects of the toxin on cumulative carbacol concentration-response curves, indicated that the toxin is more potent than tubocurarine and α-bungarotoxin. Pre-incubation of Bungarus fasciatus monovalent and neuro polyvalent antivenom failed to prevent the neurotoxic effects of α-elapitoxin-Bf1b in the chick biventer cervicis muscle preparation. In conclusion, the isolation of a postsynaptic neurotoxin that cannot be neutralized by either monovalent and polyvalent antivenoms may indicate the presence of isoforms of postsynaptic neurotoxins in Malaysian B. fasciatus venom.
    Matched MeSH terms: Elapid Venoms/isolation & purification
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links