Displaying all 2 publications

Abstract:
Sort:
  1. Thilagar S, Jothi NA, Omar AR, Kamaruddin MY, Ganabadi S
    PMID: 18161832
    Skin grafts are indicated when there is a major loss of skin. Full-thickness skin graft is an ideal choice to reconstruct defect of irregular surface that is difficult to immobilize. Full-thickness mesh grafts can be applied to patch large skin defect when there is less donor site in extensively traumatized and burned surgical patients. The concept of using natural biomaterials such as keratin, basic fibroblast growth factor is slowly gaining popularity in the field of medical research to achieve early healing. The main objective of this study is to evaluate the efficacy of gelatin conjoined with keratin processed from the poultry feather and commercially available basic fibroblast growth factor (bFGF) as a sandwich layer in promoting the viability of full-thickness skin mesh grafts. The efficacy was assessed from the observation of clinical, bacteriological, and histopathological findings in three groups of experimental dogs. The clinical observations such as color, appearance and discharge, and hair growth were selected as criteria which indicated good and early acceptance of graft in keratin-gelatin (group II). On bacteriological examination, Staphylococcus aureus and Proteus was identified in few animals. Histopathological study of the patched graft revealed early presences of hair follicles; sebaceous gland, and normal thickness of the epidermis in keratin-gelatin in group II treated animals compared with other group (group I-control, group III-bFGF-gelatin).
    Matched MeSH terms: Fibroblast Growth Factor 2/chemistry*
  2. Tabana YM, Hassan LE, Ahamed MB, Dahham SS, Iqbal MA, Saeed MA, et al.
    Microvasc Res, 2016 09;107:17-33.
    PMID: 27133199 DOI: 10.1016/j.mvr.2016.04.009
    We recently reported the antineovascularization effect of scopoletin on rat aorta and identified its potential anti-angiogenic activity. Scopoletin could be useful as a systemic chemotherapeutic agent against angiogenesis-dependent malignancies if its antitumorigenic activity is investigated and scientifically proven using a suitable human tumor xenograft model. In the present study, bioassay-guided (anti-angiogenesis) phytochemical investigation was conducted on Nicotiana glauca extract which led to the isolation of scopoletin. Further, anti-angiogenic activity of scopoletin was characterized using ex vivo, in vivo and in silico angiogenesis models. Finally, the antitumorigenic efficacy of scopoletin was studied in human colorectal tumor xenograft model using athymic nude mice. For the first time, an in vivo anticancer activity of scopoletin was reported and characterized using xenograft models. Scopoletin caused significant suppression of sprouting of microvessels in rat aortic explants with IC50 (median inhibitory concentration) 0.06μM. Scopoletin (100 and 200mg/kg) strongly inhibited (59.72 and 89.4%, respectively) vascularization in matrigel plugs implanted in nude mice. In the tumor xenograft model, scopoletin showed remarkable inhibition on tumor growth (34.2 and 94.7% at 100 and 200mg/kg, respectively). Tumor histology revealed drastic reduction of the extent of vascularization. Further, immunostaining of CD31 and NG2 receptors in the histological sections confirmed the antivascular effect of scopoletin in tumor vasculature. In computer modeling, scopoletin showed strong ligand affinity and binding energies toward the following angiogenic factors: protein kinase (ERK1), vascular endothelial growth factor A (VEGF-A), and fibroblast growth factor 2 (FGF-2). These results suggest that the antitumor activity of scopoletin may be due to its strong anti-angiogenic effect, which may be mediated by its effective inhibition of ERK1, VEGF-A, and FGF-2.
    Matched MeSH terms: Fibroblast Growth Factor 2/chemistry
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links