Displaying all 2 publications

Abstract:
Sort:
  1. Feroz FS, Leicht G, Steinmann S, Andreou C, Mulert C
    Brain Topogr, 2017 Jan;30(1):30-45.
    PMID: 27659288 DOI: 10.1007/s10548-016-0521-3
    Growing evidence from neuroimaging studies suggest that emotional and cognitive processes are interrelated. Anatomical key structures in this context are the dorsal and rostral-ventral anterior cingulate cortex (dACC and rvACC). However, up to now, the time course of activations within these regions during emotion-cognition interactions has not been disentangled. In the present study, we used event-related potentials (ERP) and standardized low-resolution electromagnetic tomography (sLORETA) region of interest (ROI) source localization analyses to explore the time course of neural activations within the dACC and rvACC using a modified emotional Stroop paradigm. ERP components related to Stroop conflict (N200, N450 and late negativity) were analyzed. The time course of brain activations in the dACC and rvACC was strikingly different with more pronounced initial responses in the rvACC followed by increased dACC activity mainly at the late negativity window. Moreover, emotional valence modulated the earlier N450 stage within the rvACC region with higher neural activations in the positive compared to the negative and neutral conditions. Emotional arousal modulated the late negativity stage; firstly in the significant arousal × congruence ERP effect and then the significant higher current density in the low arousal condition within the dACC. Using sLORETA source localization, substantial differences in the activation time courses in the dACC and rvACC could be found during the emotional Stroop task. We suggest that during late negativity, within the dACC, emotional arousal modulated the processing of response conflict, reflected in the correlation between the ex-Gaussian µ and the current density in the dACC.
    Matched MeSH terms: Gyrus Cinguli/physiology*
  2. Othman E, Yusoff AN, Mohamad M, Abdul Manan H, Abd Hamid AI, Giampietro V
    Exp Brain Res, 2020 Apr;238(4):945-956.
    PMID: 32179941 DOI: 10.1007/s00221-020-05765-3
    The present study examined the impact of white noise on word recall performance and brain activity in 40 healthy adolescents, split in two groups (normal and low) depending on their auditory working memory capacity (AWMC). Using functional magnetic resonance imaging, participants performed a backward recall task under four different signal-to-noise ratio (SNR) conditions: 15, 10, 5, and 0-dB SNR. Behaviorally, normal AWMC individuals scored significantly higher than low AWMC individuals across noise levels. Whole-brain analyses showed brain activation not to be statistically different between groups across noise levels. In the normal group, a significant positive relationship was found between performance and number of activated voxels in the right superior frontal gyrus. In the low group, significant positive correlations were found between performance and number of activated voxels in left superior frontal gyrus, left inferior frontal gyrus, and left anterior cingulate cortex. These findings suggest that the strategic structure involved in the enhancement of AWM performance may differ in normal and low AWMC individuals.
    Matched MeSH terms: Gyrus Cinguli/physiology*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links