Displaying 1 publication

Abstract:
Sort:
  1. Zilany MS, Bruce IC, Carney LH
    J Acoust Soc Am, 2014 Jan;135(1):283-6.
    PMID: 24437768 DOI: 10.1121/1.4837815
    A phenomenological model of the auditory periphery in cats was previously developed by Zilany and colleagues [J. Acoust. Soc. Am. 126, 2390-2412 (2009)] to examine the detailed transformation of acoustic signals into the auditory-nerve representation. In this paper, a few issues arising from the responses of the previous version have been addressed. The parameters of the synapse model have been readjusted to better simulate reported physiological discharge rates at saturation for higher characteristic frequencies [Liberman, J. Acoust. Soc. Am. 63, 442-455 (1978)]. This modification also corrects the responses of higher-characteristic frequency (CF) model fibers to low-frequency tones that were erroneously much higher than the responses of low-CF model fibers in the previous version. In addition, an analytical method has been implemented to compute the mean discharge rate and variance from the model's synapse output that takes into account the effects of absolute refractoriness.
    Matched MeSH terms: Hair Cells, Auditory, Inner/physiology*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links